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Abstract—This paper outlines the automatic construction of
video processing solutions using multiple software components
as opposed to traditional monolithic approaches undertaken by
image processing experts. A combined top-down and bottom-
up methodology was adopted for the derivation of a suitable
level of granularity for a subset of image processing components
that implement video classification, object detection, counting
and tracking tasks. 90% of these components are generic and
could be applied to any video processing task, indicating a high
level of reusability for a spectrum of video analyses. Domain-
specific video analysis approaches (that exploit combinations of
the above components) are built by using an automatic workflow
composition module that relies on decomposition-based planning
and ontologies. Evaluation on a set of ecological videos indicate
that the proposed approach is faster and more flexible to adapt
to changes in domain descriptions than specialized components
written from scratch by image processing experts.

I. I NTRODUCTION

Despite being a relatively young field, computer vision has
advanced rapidly over the past few decades especially in the
branch of video and image processing (VIP). Generally,
VIP includes tasks such as recognition, motion analysis, scene
reconstruction and image restoration. Recognition typically
involves the identification of pre-specified objects of interest
while motion analysis includes tasks such as target detection
and tracking that involve following the movement of a set
of points of interest or objects in the image sequence. These
are often conducted computationally by image processing
experts using highly specialized software. This work aims at
providing a more flexible methodology for performing VIP
tasks automatically so that specialized software does not need
to be written from scratch each time. Moreover, the proposed
system allows also users without image processing expertise
to conduct complex VIP tasks. The remainder of the paper
is as follows: first, related work in knowledge-based vision
is discussed (Section II) followed by an explanation of a
motion detection system (Section III). Section IV elaborates
the methodology undertaken by this work to derive a set of VIP
components based on video classification, object detection,
counting and tracking. The VIP components are introduced in
Section V, then their use within a workflow context is outlined.
An experiment to evaluate the efficiency of the proposed
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approach on a set of ecological videos is described in Section
VI, while Section VII concludes.

II. BACKGROUND

During the last twenty years, several notable efforts have
contributed to providing knowledge assisted systems and
frameworks for automating the tasks of video and image
analysis. Indeed, incorporating knowledge into video and
image analysis approaches appears as a promising approach
for improving efficiency. LLVE [1] is a goal-directed image
segmentation system which uses image features and transfer
processes as fundamental descriptive terms to represent the
knowledge about image segmentation. It utilizes production
rules to guide its search for optimal image processing solu-
tions. CONNY [2] was built to investigate the basic concepts
for a self configuring image analysis system aimed at facil-
itating high flexibility in handling different types of images
for different analysis tasks and the direct transfer of human
expert knowledge into the knowledge base of the system.
OCAPI [3] attempted to overcome the rigidity of other expert
systems by integrating image processing procedures at three
levels; physical, syntactical and semantic. It also modeled
the relationships between the various entities in the system,
making it one of the pioneering systems that attempted at
semantic integration that is achieved by ontologies today.
COLLAGE/KHOROS [4] is a NASA-driven initiative that
aimed at integrating an action-based planner (COLLAGE) to a
visual-based library of image processing modules (KHOROS)
to aid earth system scientists who study earth’s ecosystems.

The described approaches are limited to a list of restricted
and well known goals. Thereforea priori knowledge on the
application context (domain-specific concepts such as sensor
type, noise, lighting, target’s information,etc.) and on the goal
to achieve were implicitly encoded in the knowledge base. This
implicit knowledge restricts the range of application domains
for these systems and it is one of the main reasons that impede
the reusing for wider VIP tasks and solutions of the developed
software components.

Furthermore, most vision-based efforts concentrate on pro-
viding highly specialised techniques for very specific appli-
cation domains due to the high demands for performance
and accuracy, and, image processing experts, often, design
and develop such applications from scratch each time, using



trial-and-error cycles and often not reusing already developed
solutions [5].

In short, knowledge-based vision approaches are still limited
because they solve VIP problems using highly specialized
hand-crafted solutions targeted at specific tasks,e.g.detection,
classification, segmentation,etc. While this generally aims at
higher accuracy, new solutions need to be rebuilt from scratch
for new data or tasks. This work tries to overcome this limita-
tion through a flexible approach based on decomposition-based
planning and ontologies. In the next section an example motion
detection system for fish detection and tracking in underwater
videos is shown.

III. F ISH DETECTION AND TRACKING

Typically image processing experts solve VIP tasks by
designing and implementing, in form of single software com-
ponents, ad-hoc solutions that exploita-priori knowledge of
the domain of interest. In this section, a software component,
which performs video classification, object (fish) detection,
counting and tracking tasks for undersea videos [6], is de-
scribed in order to provide an understanding of the involved
processes. In general, motion detection systems distinguish
three levels of processing; pixel, frame and tracking [7]. To
illustrate a concrete example, the pixel level processing,frame
level and tracking level algorithms for fish detection, counting
and tracking tasks are shown in Fig. 1. The shaded boxes
indicate the specific algorithms that have been identified to
perform subtasks at each processing level.

Fig. 1. Pixel, frame and tracking level processing algorithms for fish
detection, counting and tracking task.

As can be seen from Fig. 1, the algorithms at the pixel
level are first applied, followed by the ones at the frame
level and finally the algorithms at the tracking level. The

pixel processing level aims at identifying pixels belonging
to objects (in this case, fish), hence at classifying pixels as
foreground (objects) or background by a comparison with a
background model, which is also created at this level. This
motion detection system uses a fusion of two background mod-
els, Adaptive Gaussian Mixture and Moving Average models.
The fusion of the two background models is achieved by
finding the intersection between the two background images.
Once a background model is created, the foreground objects
in the current frame image are determined. This is achieved by
removing occlusion and negligible (small) objects. The pixels
identified can be visualised as a binary image (with black and
white pixels) with the objects represented as white pixels and
the background as black pixels. Fig. 2 illustrates an example.

Fig. 2. Pixel level processing to identify foreground objects (right) from
original frame image (left).

The frame processing level aims at analysing foreground
pixels for grouping them into defined blobs, excluding the
groups of pixels smaller than a certain size (size filtering).
Moreover, the objects to be detected should be separated
from their shadows and occlusion suppression should be
done to separate blobs that represent more than one object.
Shape filtering could also be applied to exclude objects of
non interest. Basically this processing involves detecting the
correct objects (blobs) among all the objects identified from
the pixel level processing.

Following the example from Fig. 2, once the foreground
objects are determined, they will need to be reanalyzed to
identify the objects that are of interest for the detection task,
i.e. fish. This is often done via a shape and/or size filtering
mechanism. In this example, morphological operations that
include a smoothing, followed by a dilation and then an
erosion are applied to the binary image produced by the pixel
level processing. A shape filtering is also applied where the
shape of a fish object is determined via the computation of
the area of the convex hull of a blob over the area of the
blob itself. Fig. 3 illustrates an example frame level processing
to detect fish. Finally the tracking processing level aims at
achieving, after an appropriate extraction of the blob’s features,
blob matching to track the objects over time. This involves
comparisons between the blob in question with all the blobs
in a fixed number of preceding frames to find the blob that
matches it best.

Taking the example from Figures 2 and 3, once the cor-
rect blobs have been identified, the processing is passed to
the tracking level. Here, objects in consecutive frames are



Fig. 3. Frame level processing to identify blobs (right) from binary image
(left) with detected objects.

examined to identify which ones represent the same fish
object (tracking). First, the backprojection image of the hue
plane is computed. This image is used to predict what a
blob will look like in the next frame using the Continuously
Adaptive Mean Shift (Camshift) algorithm [8] by returning
its centre, orientation and size. Using these three information,
the Euclidean distance between the blobs in two frames are
calculated to determine the closest matching pairs. This is
repeated to compare blobs in a segment of ten consecutive
frames. In this way, pairs of blobs that “match” in the segment
refer to the same fish object. Fig. 4 shows the result of applying
tracking level algorithms for fish counting and tracking. The
next step foresees the recognition of fish species [9], but
it is beyond the scope of the paper since we propose the
knowledge-based method only for fish detection and tracking.

Fig. 4. Example tracking level processing for fish counting in a video.
Sample results for fish detection (left) and fish counting (right). The top
number indicates the number of fish in the current frame and the bottom
number indicates the total number of fish in the video so far.

As described above, the fish detection and tracking system
was implemented using VIP processes combined in a single
monolithic software component. Using such processes, a com-
bined top-down and bottom-up methodology was applied to
derive a flexible system for video classification, fish detection,
counting and tracking. In detail, this system selects the best
combination of the IP processes (underlying the previous
described system) to adapt to different domains and tasks and
it is intended to provide the basis for a modular and reusable
way to solve VIP tasks.

IV. M ETHODOLOGY

One of the most challenging aspects of conducting this
research was identifying a suitable set of VIP tools that would
represent a group of operators in a workflow composition and
execution engine (Section V). Typically, an image processing

task is solved by combining low level processes into a sin-
gle component that works only on one task (domain) or a
small subset of tasks. In order to construct image processing
programs automatically, IP processes of a lower level of
granularity would be required. In order to do this, a combined
top-down and bottom-up approach was adopted, similar to
the method advocated by Uschold and King for ontological
building approach [10]. First, the aforementioned fish detection
and tracking software component was inspected thoroughly
and tasks were broken down in a top-down manner. This
involved breaking down the steps used in solving the task
into meaningful VIP processes (blocks or components). Sub-
sequently, however, the bottom level processes were grouped
by procedure to provide a coarser level of granularity that was
more manageable. This methodology has been used effectively
to accomplish the derivation of image processing components
for this work. The approaches are outlined in more detail
below.

A. Top-down: Function Calls as Primitive Tasks

Initially, a top-down approach was adopted whereby oper-
ators were represented by primitive processes in the whole
image processing software component. The VIP task can be
seen as the high level goal that is decomposable into several
major subtasks that are in turn decomposable into further
subtasks until primitive processes are encountered. OpenCV1

was selected as the basis for the image processing code
after surveying several computer vision libraries. In a typi-
cal OpenCV program, the primitive processes correspond to
function calls, assignments, arithmetic and logical operations.
This tedious process involved separating variable declarations,
headers and function prototypes from the body of the program,
and then breaking down the program body into blocks of major
subtasks, taking into consideration conditional statements (e.g.
if-then) and loops. Once the major subtasks were identified,
they were further decomposed until the primitive level.

The hierarchical decomposition was done on a program
of approximately 1000 lines of code performing a video
classification, fish detection, counting and tracking task [6].
This method decomposed the one big task into its primitive
level operators. Among the major features or modules that
were determined included i) Pre-processing that includes video
capture and frame image grabbing; ii) A main loop that
processes each frame which involves fish detection, extraction
and tracking procedures; and iii) A classification and output
phase that computes the final results, and creates an output
video containing these results. Fig. 5 shows some example
operators derived from applying the top-down approach to the
OpenCV program. These are contained at the bottom layer of
the diagram and each can be achieved using a single OpenCV
or C++ function call.

This exercise yielded 85 unique primitive processes that
were encoded as operators in the capability ontology and
process library of the workflow system designed to evaluate

1http://sourceforge.net/projects/opencvlibrary



Fig. 5. Using top-down approach to identify some image processing operators for video classification, fish detection, counting and tracking task. Each text
line underneath a set of boxes summarizes the primitive functions used to implement the tasks given in the boxes.

this work. When run on a one-minute clip containing 300
frames, 69,011 steps or operator invocations were produced.
While the top level goals and their immediate subtasks (shown
in white boxes in Fig. 5) provided an intuitive representation of
the image processing tasks, the bottom level tasks or operators
were too fine grained and did not provide a manageable level
to work with. They were also too technical for an image
processing-naive user to comprehend and make decisions upon
(e.g.“Split Hue Plane from HSV Image”). Hence some of the
low level tasks were merged to produce a coarser level of
granularity, in order to provide a more manageable level for
users (and the system) to work with.

B. Bottom-up: Grouping of Function Calls

Having all the primitive level tasks at hand, they were
further packaged where possible to obtain operators with a
more suitable level of granularity. This involved groupingthe
bottom level processes (primitive tasks) by procedure. For
the most part, the primitive tasks were grouped to represent
the subtask one level immediately above them (see Fig. 6).
This exercise yielded 30 operators, termed asindependent
components, that were much more manageable to work with.
They are introduced in Section V.

Fig. 6. Application of bottom-up refinement to derive the software compo-
nents “Extract RGB Colours” and “Compute Main Statistical Moments”.

The advantage of this bottom-up refinement approach has
led to the identification of modules that could be reused for
most VIP tasks. In addition, the components provided a more

intuitive representation of the VIP tasks than their primitive
level counterparts. For instance, in Fig. 6, the independent
component “Compute Main Statistical Moments” which was
derived by merging primitive tasks “Calculate Mean”, “Calcu-
late Variance”, “Calculate Third Moment”, “Calculate Fourth
Moment”, “Calculate Uniformity Calculate Smoothness” and
“Calculate Standard Deviation”, is a more compact and con-
cise concept to represent a subtask to compute the mean,
standard deviation and other statistical moments of an image.

Care was taken so as not to merge some tasks that need
to be invoked independently into higher level subtasks. For
example, in order to perform the classification of the video,
three software components were developed independently as
“Compute and Write Average Luminosity”, “Compute and
Write Presence of Fish” and “Compute and Write Presence
of Algae” were developed independently. This then does
not impose the classification task to include all of these
criteria to be classified. “Compute and Write Presence of
Fish”, for instance is not required when performing only the
video classification task, while it is required when performing
video classification combined with fish detection, counting
and tracking tasks. Hence the procedure involved thorough
and repeated discussions with image processing experts in
order to produce the operators with the most suitable level of
granularity. A further refinement to reduce the number of steps
included incorporation of loops within the operators where
the number of iterations in the loop were known already or
could be determined at run-time. With this reduction of almost
threefold in the number of operators from 85 to 30, a sample
run on the same one-minute clip of 300 frames tested on
the operators from the top-down approach now yielded 8706
execution steps, a reduction of almost eightfold [11].

V. VIP COMPONENTS& U SE IN WORKFLOW CONTEXT

Each identified VIP component falls under one of six cate-
gories; “Pre-processing and Initialisation”, “Compute Predom-



inant Colours”, “Compute Main Texture Features”, “Perform
Detection”, “Perform Tracking” and “Perform Video Clas-
sification”. 30 software components were developed for the
given task, explanation of each component’s function is given
in [12]. These components were populated in a process library
that was accessible to an automatic workflow composition and
execution system, SWAV [13]. SWAV (whose architecture is
shown in Fig. 7) utilizes decomposition-based planning and
ontologies to compose VIP solutions using the aforementioned
software components.

Fig. 7. Overview of workflow composition framework for videoprocessing.

The high level user request is communicated by the user in
the design layer. This is then fed to a planner in the workflow
layer that translates the request to low level VIP invocations.
The VIP components contained in the processing layer will be
invoked by the workflow layer directly when needed. They are
also represented formally in the process library and capability
ontology in the design layer.

Consider the task “video classification according to bright-
ness, clearness and algal (green tone) levels”. The plan gen-
erated by the workflow layer is given in Fig. 8. The shaded
boxes indicate the VIP components used for this task. It should
be noted that while the overall process diagram for video
classification task is the same, the workflow execution calls
between different videos are not the same because different
parameter values will be required for the components. As this
is dealt with automatically by the workflow engine, modularity
and reusability are achieved by the SWAV workflow system.

VI. EVALUATION

An experiment was devised to show that the proposed
approach adapts quicker to changes in user preferences than
specialized VIP software components. This is the test of adapt-
ability of the workflow system to reconstruct VIP solutions
efficiently when the domain descriptions for a task are altered.
This experiment will demonstrate that a solution constructed
by an image processing expert using a specialized image
processing software component takes longer to produce such

changes in the domain descriptions for the same task. An
image processing expert and a workflow modeller have access
to the same set of VIP tools; the former has an OpenCV
program with available image processing algorithms written as
functions and the latter in the form of independent software
components defined in the process library (VIP components
described in Section V). 27 videos of varying quality from
the Taiwanese Ecogrid project2 were used as the data set.

Both subjects were familiar with the systems that they were
manipulating. They were given an identical task to perform –
fish detection, counting and tracking in a video. Both systems
were able to perform this task using a default detecting
and tracking algorithm. In the workflow tool, the Gaussian
mixture model was defined as the detection algorithm, no
methods were defined for the selection of any other detection
algorithm. In the OpenCV program, the Gaussian mixture
model was used as the detection algorithm. Six scenarios
were presented to both subjects containing changes to domain
conditions (see Table I). Both subjects were asked to make
modifications or additions of code to their respective systems
to cater for these changes in order to solve the VIP task
as best as possible. For this purpose, they were both given
which detection algorithm should be selected in each case.
The number of lines of code (OpenCV for image processing
expert and Prolog for workflow modeller) and the time taken
to make these modifications were computed for both subjects.
A line of code in OpenCV is represented by a valid C++ line
of code,i.e. a line ending with a semi-colon (;), a looping or
conditional statement (if/for/while). In Prolog, a line of
code is a single predicate or fact ending with a full stop (.),
a statement ending with a comma (,) or the head of a goal
(line ending with:-).

The quality of the solutions was calculated as follows. There
are two values to be considered, the first is the number of fish
in the current frame and the second is the number of fish
in the video so far. Each of these was given a score of 1 if
there was a match with the ground truth. For each frame, the
accuracy could be 0%, 50% or 100%. An average accuracy as
a percentage is computed by taking the accuracy of 10 frames
(1st, 6th, 11th, ..., 46th) from each video over all 27 videos.

Statistical hypothesis testing using thet-distribution [14]
was conducted to measure the dependencies between the re-
sults obtained for the times (efficiency) taken to make changes
to the workflow tool and OpenCV program. The hypothesis,
H and null hypothesis,N for this experiment were:

H Constructing VIP solutions using the workflow tool is
more time-efficient than modifying existing VIP
programs each time a domain description is altered.

N There is no difference in the time taken to solve VIP
tasks using the workflow tool and modifying existing
programs each time a domain description is altered.

For this sample set, the two sample dependentt-test was
performed to determine thet value and its correspondingp-
value in order to accept or reject the null hypothesis. The

2http://ecogrid.nchc.org.tw



Fig. 8. Plan for “video classification according to brightness, clearness and algal levels”.

TABLE I
COMPARISONS OF NUMBER OF NEW LINES OF CODE WRITTEN, PROCESSING TIMES AND ACCURACIES OF SOLUTIONS BETWEEN SINGLE-COMPONENT

VIP PROGRAM AND MULTIPLE-COMPONENT WORKFLOW TOOL TO ADAPT TO CHANGING DOMAIN DESCRIPTIONS.

Domain Descriptions Image Processing Expert Workflow Modeller
(User Preference) New Lines Time Accuracy New Lines Time Accuracy

of Code (min.) % of Code (min.) %

Prefer false alarm than miss 43 16 58.25 3 3 59.30
Prefer miss than false alarm 56 23 62.55 2 2 64.80
Clear, no background movement 43 16 58.46 3 3 60.71
Clear, background movement 61 27 60.42 2 2 60.10
Blur, no background movement 43 16 60.88 3 3 62.09
Blur, background movement 57 32 63.80 2 2 61.22

Average 50.50 21.67 60.73 2.50 2.50 61.37

achieved significance level was ofp ≪ 0.05 and, assuming
a significance level ofp < 0.05, the null hypothesis was
rejected. Thus the workflow tool is faster to adapt to changes
in domain descriptions than the image processing program.

VII. CONCLUSIONS

In this paper we have proposed a flexible approach for
intelligent video analysis based on a combination of top-down
and bottom-up approaches to be used in a workflow context. A
set of 30 low level VIP components have been identified useful
for a typical set of VIP tasks that include video classification,
object detection and object tracking tasks. 27 out of 30 of these
VIP components have been identified as reusable with respect
to generic video processing tasks by image processing experts,
under the assumptions that the input values they depend on
(text files, images and videos) are specified in the process
library. The experimental results have shown that the proposed
approach easily and reliably adapts to changes of tasks and
domains. Moreover, this approach also enables the derivation
of multiple combinations of VIP solutions for the same task,
making it more flexible than previous approaches that can
only derive a single sequential way for solving a VIP task.
New VIP algorithms will be added and the system will be
evaluated on different domains (e.g. video surveillance and
human detection). This approach will also be tested on a
distributed pipeline execution environment.
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