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Abstract— In this paper a two-phase filter for removing “salt
and pepper” noise is proposed. In the first phase, an adaptive
median filter is used to identify the set of the noisy pixels; in the
second phase, these pixels are restored according to a regular-
ization method, which contains a data-fidelity term reflecting the
impulse noise characteristics. The algorithm, which exhibits good
performance both in denoising and in restoration, can be easily
and effectively parallelized to exploit the full power of multi-core
CPUs and GPGPUs; the proposed implementation based on the
FastFlow library achieves both close-to-ideal speedup and very
good wall-clock execution figures.

Keywords— Impulse Denoising, Image Restoration, Multi-core
parallelization, lock-free synchronization

I. INTRODUCTION

The ever increasing computing power available from off-

the-shelf processors has allowed researchers to extend the

number of applications in image processing and machine

vision. One important step in any machine vision system is

the image restoration phase, which has gathered the attention

of image processing researchers, especially with the massive

production of digital images and movies, often grabbed in

poor conditions. A typical noise that affects digital images

is “Salt and Pepper” noise [1], which may be caused by mal-

functioning pixels in camera sensors, faulty memory locations

in hardware or transmission in a noisy channel [2]. This noise

sets the corrupted pixel value to the maximum or the minimum

of the pixels variation range (0 or 255 for an 8-bit image).

During the last fifteen years, a large number of methods have

been proposed to deal with salt and pepper noise (and more

in general impulse noise) from digital images [3]. Most of

these methods are order statistic filters that exploit the rank-

order information of an appropriate set of noisy input pixels.

The median filter is the most popular non-linear filter for

removing impulse noise, because of its good denoising power

[2] and its computational efficiency [4], but it affects image

details while removing noise. These issues have been generally

addressed by filtering techniques based on the median filter

modifications [5], [6]. However, the performance of median

filtering based approaches is unsatisfactory in suppressing

signal-dependent noise [7] when the noise percentage is high

(more than 50%). To achieve a good compromise between the

image-detail preservation and the noise reduction an impulse

detector must be used before filtering. Several types of impulse

detectors exist: the most famous is the progressive switching

median (PSM) [8]. Machine learning approaches have also

been widely used in the last years, e.g. approaches relying on

neural networks [9], Bayesian networks [10], fuzzy logic [11]

and neuro-fuzzy [12]. The filtering is then selectively applied

to the noisy regions detected by the noise detector. To the best

of our knowledge, one the most effective algorithm for edge

preserving in salt and pepper denoising has been proposed by

Nikolova in [13] that applies a variational method for image

details preserving that is based on a data-fidelity term related

to the impulse noise. Based on this approach Chan et al. in

[14] (called for simplicity Chan’s method) proposed a powerful

filter able to remove salt and pepper noise as high as 90%.

Similar approaches to the Chan’s method, aiming at improving

the noisy detection step and at reducing the processing times,

are the ones proposed in [10], [15]–[18]. In this paper an

optimized version of the Chan’s method is introduced and

tested with various test images. Moreover, the algorithm has

been parallelized both using FastFlow [19], a framework for

parallel programming over multicore platforms, and GPU

programming for improving the efficiency of the filter in order

to be really compatible with real-time applications.

The outline of the paper is as follows: in the next section

the denoising filter is reviewed. Section 3 shows the per-

formance of the sequential implementation of the described

filter, whereas sect. 4 and section 5 point out, respectively,

the parallel implementation of the proposed algorithm and the

experimental results. Finally, in the last section concluding

remarks are given.

II. TWO-PHASE EDGE PRESERVING FILTER

The proposed filter for impulse noise is a two-phase al-

gorithm: 1) Noisy pixels Identification (called detect) and 2)

Noisy Pixel Restoration (called denoise). The first step iden-

tifies noisy pixels by means of a modified Adaptive Median

Filter (AMF) classifier; whereas the second step restores them

using a variational approach [13].
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A. Noisy Pixels Identification via Adaptive Median Filter

Let ŷ be the map of noisy pixels, obtained by applying the

adaptive median filter classifier to the noisy image, that has 1

in correspondence of the position of the noisy pixels, whereas

0 in correspondence of the uncorrupted pixels. Hence the

set of noisy pixels N (where the restoration algorithm has

to be applied) consists of the overall pixels of the original

image y whose values in the ŷ map are equal to 1, i.e.:

N = {(i, j) ∈ A : ŷi,j = 1}

The set of all uncorrupted pixels is N c = A \N , where A

is the set of all pixels. Notice that, since the pixels with color

different from 0 or from 255 are surely uncorrupted, the AMF

filter [20] can be modified to exclude them with significant

benefits in term of performance and false positive rate.

B. Variational Method for noisy pixels restoration

The problem of image restoration for edge preserving is an

inverse problem solved by using regularization, where the re-

stored image u is given by solving the following optimization

problem restricted to the set of the noisy pixels N .

min
u∈N

F (u) = α

∫

R(u) + β

∫

D(u, d) (1)

Where d is the image corrupted by the noise, D(u, d) is

the data-fidelity term that is related to the kind of noise

and provides a measure of the deviation between d and the

output image u, whereas R(u) is a regularization term that

uses a-priori knowledge for enforcing the solution and should

be represented by a function that penalizes/removes only

irregularities due to the affecting noise, thus leaving out high-

level discontinuities (edges). β and α are the regularization

parameters that balance the effects of both mentioned terms.

Among all the functionals F(u) (see [21]) for edge preserving

proposed during the last fifteen years, we have selected the

one proposed in [14]:

Fd|N (u) =
∑

(i,j)∈N

[|ui,j − di,j |+
β

2
(S1 + S2)] (2)

where

S1 =
∑

(m,n)∈Vi,j∩N

2 · ϕ(ui,j − dm,n) (3)

S2 =
∑

(m,n)∈Vi,j∩Nc

ϕ(ui,j − um,n) (4)

where N represents the noisy pixels set, N c the set of

uncorrupted pixels, and Vi,j is the set of the four closest

neighbors of the pixel with coordinates (i, j) and d is the

corrupted image. As in [14], we have used the following

ϕ function that provides the best trade-off between edge

preserving and denoising: ϕ(t) = |t|α ϕ(t) = |t|α with

1 < α ≤ 2. The values of α and β were, respectively, set to

1.3 and 4 in order to guarantee the trade-off between noise

removal and edge preservation provided by the function ϕ.

The minimization problem is then solved by an algorithm

that works on the residuals z = u − y of the functional (1)

and it is following reviewed:

– Initialize z(0)
ij

= 0 for each (ij) ∈ A;

– At each iteration k, calculate, for each (ij) ∈ A,

ξ
(k)
i,j = β

∑

(m,n)∈Vi,j

ϕ̇ (yi,j − zi,j − ym,n)

where zm,n, for (m,n) ∈ V i, j, are the latest updates and ϕ̇

is the derivative of ϕ.

– If ξ
(k)
i,j ≤ 1, z

(k)
i,j will be set to 0. If not, z

(k)
i,j is the solution

of the following equation:

β
∑

(m,n)∈Vi,j

ϕ̇
(

z
(k)
i,j + yi,j − zm,n − ym,n

)

= sign
(

ξ
(k)
i,j

)

The quasi-Newton method [22] is recursively applied to find

the restored image û that minimizes the functional shown in

(2). Examples of convergence criteria are:
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III. SEQUENTIAL ALGORITHM: EXPERIMENTAL

EVALUATION

The algorithm has been prototyped in C++ and tested on a

single core of an Intel workstation Xeon E7-4820 @2.0GHz

with 8MB L3 cache and 64 GBytes of main memory with

Linux x86 64. The test of the denoising filter was performed

on standard testing images of different sizes (see Fig. 1). In

order to compare results with literature, the results reported in

this section are referred to 256x256 8-bit grayscale images:

Lena and Peppers featured by homogeneous regions and

Bridge and Baboon characterized by high activity (see Fig.

1). These images have been corrupted by “salt” (value 255)

and “pepper” (value 0) noise with equal probability; a range

of noise levels, from 10% to 90%, was tested.

The algorithm was evaluated according to two main metrics:

1) noise identification and restoration quality, and 2) execution

time. Denosing and restoration performance was measured by

the peak signal-to-noise ratio (PSNR) and the mean absolute

error (MAE) defined as follows:

PSNR = 10 · log10
2552

1

MN

∑

i,j

(ri,j−xi,j)2

MAE = 1
MN

∑

i,j

(ri,j − xi,j)
2

where ri,j and xi,j denote, respectively, the pixel values of

the restored image and the original image. Table 1 shows the

PSNR and MAE, respectively, for Lena, Peppers, Bridge and



Fig. 1. Images used for testing the proposed denoising algorithm (Lena, Peppers, Bridge, Baboon, and Space).

Lena — Noise level Peppers — Noise level Bridge — Noise level Baboon — Noise level

10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

PSNR 41.96 35.76 32.56 29.47 24.43 42.27 35.49 31.57 28.23 23.12 36.61 31.50 28.11 25.23 21.22 35.39 29.73 26.94 24.61 22.06

MAE 0.36 1.21 2.27 3.85 8.82 0.30 1.10 2.18 3.94 9.90 0.82 2.61 4.85 8.06 15.01 0.94 3.14 5.63 8.87 13.96

Table 1. PSNR and MAE obtained at varying of the noise affecting Lena, Peppers, Bridge and Baboon images.

Fig. 2. Lena: 70% & 90% of noise and restored version.

Baboon images reported at varying of the noise level (from

10% to 90% at step of 20%).

To better estimate the achieved restoration quality, Fig. 2

and Fig. 3 show the denoised images (Lena and Baboon) while

they are affected, respectively, by 70% and 90% of noise.

Fig. 4 shows the denoised Space image, which is quite more

complex due to bright spots and dark background.

The first phase (detect) exhibits a linear execution time

with respect to the total number of pixels. However, for

the tested images, the detect phase is two–three orders of

Fig. 3. Baboon: 70% & 90% of noise and their restored versions.

magnitude faster than a single iteration of the second step (de-

noise). The second phase shows a computational complexity

of O(n noisy pixels · n iterations), where n noisy pixels

is the number of noisy pixels identified in the first step, and

n iterations is the number of iteration required to reach one

of the convergence criterions (see section 2).

Although the denoising performance, in terms of PSNR and

MAE, of the proposed approach is comparable or better with

the existing variational based approaches, e.g. Chan’s method

[14], Cai’s method [10], [16] , Chen’s method [17], the

proposed algorithm appears significantly more efficient with



Fig. 4. Space: 70% of noise and its restored version.

respect to the above methods (e.g. 75s for Lena 256x256 with

90% of noise, PNSR=24.42, MAE=8.81).

We believe that the major factor of speed of the proposed

prototype is due mainly to a number of optimizations we

performed on of basic algorithm, such as reduction of expen-

sive mathematic operations (thanks to cycle invariants), better

memory management and noisy pixel manipulation.

IV. PARALLEL IMPLEMENTATION

The achieved performance (see Sec. III) might be still

considered not sufficient for real-time applications (e.g. video)

and large images. Moreover, the sequential prototype of the

algorithm do not exploit neither the full power of multi-

core platforms not the potential of GPGPUs accelerators. We

advocate a FastFlow-based high-level parallelization of the

algorithm that is able to exploit parallelism in both phases

and on both multi-core and GPGPUs. The high-level approach

make it possible to realize the parallel porting with a low

programming effort.

FastFlow is a C++ pattern-based parallel programming

framework aimed at simplifying the development of applica-

tions for (shared-memory) multi-core and GPGPUs platforms.

The key vision of FastFlow is that ease-of-development and

runtime efficiency can both be achieved by raising the ab-

straction level of the design phase, thus providing developers

with a set of parallel programming patterns, such as farm,

divide&conquer, pipeline, map, reduce patterns, and supports

their arbitrary nesting and composition. [19]. Map and reduce

patterns can be run both on multi-cores and offloaded onto

GPGPUs. In the latter case, the business code can include

GPGPU-specific statements (i.e. CUDA or OpenCL state-

ments). FastFlow is available as an open source software

under LGPLv3 at FastFlow website [23], where are also

reported performance comparison against other programming

tools such as POSIX, Cilk, OpenMP, and Intel TBB.

A. The high-level algorithm

The two-phase fiter methodology naturally induces an high-

level structure for algorithm, which is can be described as

the successive applications of two filters as described in

Fig. 5. The two phases can operate in pipeline in the case

the two-phase denoiser is used on a stream of images (e.g.

in a video application). In addition, both filters can be par-

allelized in a data-parallel fashion. Let map f [a0, a1, . . .] =
[f(a0), f(a1), . . .] and reduce ⊕ [a0, a1, . . .] = a0 ⊕ a1 ⊕ . . .,

where ⊕ is a binary associative operator, and [a0, a1, . . .] an

array (e.g. the pixels of an image):

a) Detect: : in the detect step (i.e. an adaptive median

filter) each pixel can be processed independently, provided

the processing element can access to a read-only halo of the

pixel is available. The process is expressed by way of the

map pattern, which applies the following blocks of code to

all pixels. A set of (candidate) noisy pixels is produced.

b) Denoise: : The denoise step follows a similar ap-

proach, as the variational method can be computed inde-

pendently for each pixel (with previous iteration halo). This

step is iterated up to a convergence criteria is reached. The

convergence criteria is a global propriety of the image, thus

should be computed via a reduce parallel operator by reducing

the difference between last two iterations according to a given

convergence criteria (e.g. based on PSNR as 5 or MAE as 6).

B. Multi-core and GPGPUs variants

The high-level approach significantly ease code portability

and performance portability onto different platforms. The

approach is fully supported by the FastFlow framework that

provides the programmer with both multi-core and GPGPUs

(efficient) implementation of the parallel patterns (i.e. map,

reduce, farm, pipeline). In particular, the multi-core imple-

mentations of patterns are realized via non-blocking graphs

of threads connected by way of lock-free channels [19],

whereas the GPGPUs implementation are realized by way of

C++/CUDA templates and offloading technique [24]. Also,

different pattern can be mapped onto different sets of cores

or accelerators, thus suing the full available power of multi-

core platforms equipped with accelerators. The business code

running onto GPGPUs can be further hand-tuned by exploiting

CUDA-specific features, e.g. data buffering in the device

fast memory (e.g. so-called shared memory in the CUDA

framework). This kind of fine-tuning might bring significant

performance improvements and, in general, can be hardly

automatized at the FastFlow level because is typically very

related to the business code. However, the performance gain

that can be achieved from this kind of tuning is expected

to decrease with novel GPGPUs boards supporting hardware

caching (e.g. latest NVidia Tesla GPUGPUs with CUDA 4.x).

V. EXPERIMENTAL EVALUATION

All experiments reported in this section have been con-

ducted on an Intel workstation with 4 eight-core double-

context Xeon E7-4820 @2.0GHz, 18MB L3 shared cache,

256K L2, and 64 GBytes of main memory equipped with

a NVidia Tesla C2050 GPGPU with Linux x86 64, gcc 4.4,

FastFlow 1.1 and CUDA 4.0.

Fig. 6 shows the speedup achieved with multi-core variant

of the algorithm on Lena image 512x512 and Space image



map p in pixels do
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if (is_impluse(p))  
      return NOISY;
    return NOT_NOISY;

while (converge_not_reached)
  map u in noisy_pixels do
    z=value_minimizing F(u);
  reduce (u,z) in noisy_pixels do
    convergence(u-z);
     

Pixels in different partitions 
can be independently 
analyzed in parallel. 
Partitions can have any 
size (e.g. 1 pixel).
The median filter adapt the  
halo size to the complexity 
of the image.

Pixels in different partitions 
can be independently 
analyzed in parallel. 
Partitions can have any size.
The variational method 
analyse on a closest 
neighborhood halo. The 
color of pixels in the halo are 
referred to the previous 
iteration.

detect denoisenoisy restored

pipeline

Fig. 5. Two-phase denoiser.
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Fig. 6. Speedup on Xeon E7-4820 32 cores platform: left) Lena 512x512; right) Space 4096x4096.

4096x4096 for different levels of noise. In general, as the 90%

of the total time is spent in denoising phase, the multi-core

variant exhibits an almost ideal speedup in all configurations

for non-trivial number of noisy pixels (i.e. large images or

quite noisy small images). However, it maintains a decent

speedup also for very fine computational grain. As an example,

as shown in Fig. 6 left, the denoising of a 512x512 image with

10% of noise using 30 cores still keeps a 17X speedup with

a execution time per core of only 56 ms.

Execution wall-clock time are shown in Table 2 for both

multi-core and multi-core with GPGPU variants. The Lena

image of size 512x512 with 90% of noise can be restored in

about 10.9 seconds (using all cores) versus the 290 seconds

required by the sequential version, resulting in more than 26X

speedup. Increasing the image size the speedup increase up to

28X for almost all noise levels. The speedup grows to 104X

in the case the most expensive phase (denoising) is offloaded

to the GPGPU Tesla accelerator. Thanks to FastFlow very low

synchronization overhead, similar results can be achieved also

in larger platform configurations. Also, the experimentation

Table 2. Performance for the Lena image (512x512) in two configurations:

FastFlow on CPU only (32cores), and FastFlow on CPU and GPGPUs.

noise FF 32cores (s) FF 8cores + Tesla (s) Seq (s)

10 1.8 1.9 32
50 6.5 2.3 162
90 10.9 2.8 290

on different images shown that the performance are quite

independent from image complexity since this principally

affect the computational time of detect phase, which is not

the bottleneck of the algorithm.

WIth respect to the quality of restoration, the low rate of

false positives in the detection of noisy pixels achieved by the

adaptive median filter brings an overall improvement of the

quality of restoration as non-noisy pixels are not changed by

the denoise phase. We noticed a improvement of the MAE (see

Table 3) with respect to the original version of the algorithm

(Chan’s method in [14]) especially for high levels of noise.



Table 3. Comparison between our approach and the Chan’s one [14] in

terms of PSNR and MAE for Lena and Bridge images.

Method Lena — Noise level Bridge — Noise level

30% 50% 70% 90% 30% 50% 70% 90%

PSNR Chan’s 35.20 32.21 29.03 22.46 30.29 27.91 25.00 19.02
PSNR Our 35.76 32.56 29.47 24.43 31.50 28.11 25.23 21.22

MAE Chan’s 1.5 2.97 4.2 12.45 3.75 5.30 8.10 21.25
MAE Our 1.21 2.27 3.85 8.82 2.61 4.85 8.06 15.01

VI. CONCLUDING REMARKS

We have proposed a novel approach for parallel edge

preserving restoration of images (and videos) affected by salt

and pepper noise. The approach builds on existing techniques

by conjugating their strengths. As result, the proposed method

is able to achieve a restoration quality —in term of visual

quality, PSNR and MAE— better or similar to the best existing

approaches and that is particularly fast and scalable on parallel

architectures (both multi-core and GPGPUs).

The restoration is made in two phases: detect and denoise.

The detect phase, which is based on a adaptive median filter

is both effective and fast in identifying candidate noisy points.

On salt and pepper noise It is able to provide a close to zero

rate of false positives and can be easily parallelized. It can

be also used to restore the image, but the filtering does not

preserve the edges of the image and the restoration quality is

often disappointing. For this, the noisy points are restored in

a successive phase by way of a variational method (denoise),

which provides a high-quality edge-preserving restoration

even if has an higher computational cost. The application

of the variational method to noisy point only (unlike other

approaches base on the same technique, e.g. [14]), make it

possible to both improve the restoration quality and speed.

To further speed up the denoising phase, which remains

expensive, it has been parallelized for both multi-core and

GPGPUs. To the best of our knowledge no other algorithm

for removing salt and pepper noise can currently compete in

terms of overall quality of restoration and execution time with

the two-phase filter proposed in this paper.

The parallel version has been semi-automatically derived by

the sequential algorithm thanks to FastFlow and its software

acceleration technique [24]. The possibility of pipelining the

two phases make it possible to further accelerate the denoising

of stream of images (e.g. video applications). Despite the very

limited development effort required, the parallel version guar-

antees close to optimal speedup and scalability on standard

cache-coherent multi-core workstations. Also, we believe that

the denoising problem is a paradigmatic example of image

processing applications, and therefore the proposed paralleliza-

tion approach can be easily and successfully extended to many

other algorithms.
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