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Abstract: The Fish and Environment Property Description deliverable
(D1.2) of the Fish4Knowledge project describes the list of image cues
used for describing fish and environment in order to support higher level
components for fish detection, tracking, classification, behavior analysis and
data visualization. The adopted descriptors have been developed in order
to deal both with the peculiarities of fish appearance and motion in their
natural habitat and the scene under analysis. To this end, we have chosen
fish descriptors which are as much generic as possible in order to make the
above task insensitive to variations in the target’s position, size, appearance,
orientation, scale and trajectory’s length with respect to the camera.
At the same time global and local image and video features have been
employed to describe underwater environments for understanding fish-
background interactions, supporting data uncertainty management and
monitoring the system maintenance needs.
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1 Introduction
Fish and environment description are key tasks in the F4K project because they provide the

basic information for supporting the fish identification task (from detection to recognition) and
for studying fish interaction with the surrounding environment.
Fish description techniques, in detail, have been investigated and devised for i) discriminating
background objects from fish, ii) fish species classification and iii) fish behaviour classification
and anomaly detections (Section 2). For the first task, specific real-world fish features, such
as object proximity, continuity, symmetry and objectness (see Sect. 2.1), have been employed
and applied to a post-processing level to the fish detection algorithms (introduced in Deliver-
able 1.1) has proved their ability to recover effectively errors occurring in the detection task,
especially by reducing false positives. Since fish are generally characterized by erratic and fast
movements which lead to frequent changes in size and position, a pre-processing layer before
fish classification has been employed aiming at making the descriptors independent from the
object’s position and orientation. After this pre-processing setting, a combination of boundary,
color and texture features is used.
The fish behaviour analysis process (Section 2.3), instead, relies on representing and mod-
eling behaviours through trajectory analysis. More specifically, fish behaviour analysis has
been carried out by Hidden Markov Models, since they intrinsically encode spatio-temporal
sequences of data avoiding the normalization of different-length trajectories derived from a
point-sequence representation of fish movements. Beyond the behaviour classification approach
based on HMM, we have also devised methods to identify anomalous behaviours.
Finally, descriptors of the observed underwater scenes have been extracted for the tasks of
video, image segmentation and scene classification (Section 3), which are crucial to support our
strive towards fully understanding marine ecosystems and displaying the interpretation of the
achieved results to marine biologists.

2 Fish Description
Fish description in the Fish4Knowledge project is necessary to support fish detection, recog-

nition and behaviour understanding. In detail, different features have been used/conceived to
meet the following three goals:

• to discriminate fish (as coming out from the foreground identification process) from other
background objects in order to reduce the number of false positives due to errors during
the detection process.

• to identify the species each fish instance belongs to by analysing fish texture, shape and
colors;

• to model and recognise fish behaviour and its interaction with the surrounding context.

In the next subsections the features employed to represent a fish, its appearance and its
behaviour are described.
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2.1 Fish - Background Objects Classification
As described in Deliverable 1.1 several object detection algorithms have been developed

for background modeling and foreground identification. However, none of them demonstrated
to be generally superior to the other ones in terms of false positives. This led us to add a
complementary processing level to fish detectors in order to detect and recover from failures that
eventually happen in the detection process. In detail, to discriminate fish from other background
objects we adopted a set of specific features of real-world objects. The set of considered features
exploit two main concepts: 1) the “human perceptual organization model” to discriminate blobs
that are most likely produced by the motion of a biological object from blobs that may arise due
to changes in the background (i.e. luminosity), 2) the “motion objectness” to compute the
probability that a change detected by the above algorithms is due to fish movement instead of
background movement (e.g. corals or algae).

2.1.1 Perceptual Organization Model Features

The ability of humans to identify objects, and more in general structures, without a priori
knowledge of their contents is known as perceptual organization, which is governed by the four
Gestalt laws that identify some basic principles of whole objects such as proximity, similarity,
continuity, symmetry and convexity [1], i.e. real-world objects tend to have convex shape, tend
to be symmetric with respect to a reference axis, etc. To measure quantitatively the Gestalt laws
in real-word applications, we have adopted the method proposed in [2] which encodes such
laws into a boundary energy function:

E [∂R] =
−
∫ ∫

R
f (x, y) dxdy

L (∂R)
(1)

where ∂R is the object’s contour, L (∂R) the contour’s length, and f (x, y) is a weight function
for each point belonging to the object. The first step for the evaluation of f (x, y) is a superpixel
segmentation [3] of the object’s region into homogeneous patches. For each pixel (x, y),
belonging to patch i, the corresponding weight is computed as:

f (x, y) = e−θ•η(Si−Sa) (2)

In this formula, Si is a two-component vector [Bi Ci], where Bi and Ci represent, respectively,
the boundary complexity of patch i and its cohesiveness with the other patches which make up
the object. Sa is a reference vector computed on the largest patch of the object [2]. θ is a weight
vector and η is vector element-by-element absolute value.

2.1.2 Motion Objectness

To distinguish between moving blobs produced by fish movement and blobs due to back-
ground object movements, we conceived the concept of “Motion Objectness” taking inspiration
from the work of Alexe et al. in [4] who used the “Objectness” to identify generic class objects
on still images. The intuition behind this concept is that any fish is characterized by specific
intraframe and interframe properties which make its movement different from background
objects.
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In the following we use the term “blob” to indicate a particular area closed by a contour as
provided by the fish detection processes.

• Intraframe Properties. To describe the peculiarities of a fish within an image, we took
under consideration the following characteristics:

– Closed boundary in space. This property aims at evaluating how the blob’s contour
matches the object’s boundary. To measure it, we assess the density of edges in-
cluded in a blob. Let δb and bθin be, respectively, the contour of the considered blob
b and the inner blob obtained by shrinking b of a factor θ. The edge density is given
by:

ED =

∑
p∈bθin

MED(p)

Ab\δb
(3)

where MED(p) is a binary edgemap and indicates if the pixel p is classified as edge
by a Canny edge detector. Ab\δb is the area of the blob b minus its contour δb ( \ is
the set difference symbol).
Moreover, we also used the percentage of superpixels intersecting the blob’s con-
tour, computed as follows:

SI = 1−
∑

s∈S min(|s\b|, |s
⋂
b|)

|b|
(4)

where S is the set of superpixels computed as in [3] and |b| the blob’s area.

– Appearance difference from surrounding areas. The dissimilarity of an object to
its surrounding area is estimated by analysing color contrast along the object’s
boundary. Let bθout and bθin be the outer and the inner blob obtained, respectively,
by dilating and shrinking the original blob b of a factor θ (empirically set to 2 in
our implementation), the color contrast along the boundary of a blob b is computed
as the Chi-square distance between the LAB histograms of the two rings (outer and
inner) surrounding the object’s boundary:

CC = χ2(h(b\bθin), h(bθout\b)) (5)

– Internal homogeneity of color and texture. Most fish appear to have a limited
number of colors and a uniform texture (due to the low resolution of the video),
especially when compared with complex background objects (e.g. algae, corals,
rocks, etc.). The internal homogeneity of a blob has been assessed by computing
the average color value and the average texture of all the superpixels in a blob. The
more similar these average results are, the more likely the detected blob is actually
a fish. The average color homogeneity is given by the following formula:

HC = 1−
∑

s∈S

∣∣∣∣Cs − C∣∣∣∣
Dim(S)

(6)

where S is the same set of superpixels described above, Cs is the average color
within each superpixel s, C is the average color within the whole blob and Dim(S)

Version 2.0; 2012–09–30 Page 5 of 23 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable D1.2

is the number of superpixels. Analogously, the measurement of the internal tex-
ture homogeneity is performed by averaging the outputs of a bank of Gabor filters
applied to each superpixel in the detected blob.

– Preferred positions. The spatial coordinates of the blob’s centroid are also used to
measure “objectness”, since we assume that some positions are more likely than
others to contain objects.

• Interframe Properties. Any fish holds the motion coherence property that allows us to
distinguish it from the rest of the scene. To measure this property, we propose two cues
based on the object’s motion vector (calculated according to [5]):

– Difference of motion vectors at object boundary: LetMb,in andMb,out be the average
motion vectors computed, respectively, in the ring just inside and the ring just
outside the blob’s boundary, the motion difference at the boundary ∆MV is assessed
as the Chi-square distance between the motion histograms assessed in the two rings
(whose size was set empirically set to 3 in our implementation):

∆MV = χ2(h(Mb,out), h(Mb,in)) (7)

– Internal motion homogeneity. This cue is based on the assumption that the internal
motion vectors of a correctly-detected fish are more uniform than the ones of a
false positive. The detected blob is split into a set of superpixels (as above) and
the average of motion vector’s magnitude in each superpixel is compared with the
global one. The internal motion homogeneity MH is computed as follows:

MH = 1−
1

Dim(S)

∑
s∈S

1

Dim(Vs)

∣∣∣∣∣∣
∑

p∈Rs∩Vs

|Mp| −M

∣∣∣∣∣∣
2

(8)

where S is the set of superpixels in the analysed blob andDim(S) its dimension,Rs

is the union between the superpixel’s current bounding box Rs(t) and the bounding
box of its last appearanceRs(t−1), Vs is the set of valid points inRs, i.e. the points
whose displacement project them inside Rs and Dim(Vs) is the number of valid
points in Vs. Finally, Mp is the motion vector (two components: x and y) describing
the displacement of pixel p in two consecutive appearances and M is the average
motion vector between all superpixels.

The feature vector, containing the above objectness’s measures and the perceptual organi-
zation energy value of each detected blob, is then given as input to a naive Bayes classifier
with two classes: “object of interest” (OI) and “false positive” (FP), which computes the
probability that the considered blob is a fish or not. A detailed evaluation performance of the
proposed approach can be found in [6]. Fig. 1 shows an example of estimated probabilities of
some detected blobs to be fish. By filtering out all the blobs with estimated probability lower
than a threshold, we were able to reduce the number of false positives to about 10% as shown
in [6].
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Figure 1: Example of estimated probability of the blobs (for simplicity only the bounding boxes
are drawn) to be a fish.

2.2 Fish Species Classification
Fish descriptions for species classification have to cope with the peculiarities of fish and

their movement; in fact, fish show erratic and fast movements (in three dimensions, which
look even faster when processing low fps videos) that lead to frequent changes in size and
appearance. This implies that the adopted features must be invariant to affine transformation,
object’s position, orientation, scale and slant. In order to overcome this limitation we devised
a strategy that works on fish contours on a pre-processing module that produces standard fish
orientation. In detail, we propose a streamline hypothesis, which uses the assumption that
the tail has an abrupt shape because fish need a more frictional tail (caudal fin) to swim and
help them keep balance. In order to find the tail’s side, we smooth the fish boundary with a
Gaussian filter to eliminate some noise, and then calculate the curvature of each boundary pixel
as following:

κ(u, σ) =
Xu(u, σ)Yuu(u, σ)−Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2))
3
2

(9)

where Xu(u, σ)/Xuu(u, σ) and Yu(u, σ)/Yuu(u, σ) are the first and the second derivative of
X(u, σ) and Y (u, σ), respectively; X(u, σ) and Y (u, σ) are the convolution result of 1-D
Gaussian kernel function g(u, σ) with fish boundary coordinates x(u) and y(u). However, the
pixel curvature is sensitive to local corners and so, we normalize it using the logarithm function:

κnormalize =

{
log(κ) if κ ≥ 1

−log(2− κ) if κ < 1
(10)

The fish boundary coordinates are weighted by their local curvature and the vector starting
from the center of the mask and ending to the weighted curvature’s center estimates the tail’
orientation. A typical fish orientation detection procedure is illustrated in Figure 2. Finally,
every fish image is divided into four parts (head/tail/top/bottom) according to their relative
positions from the fish center.
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(a) . (b) . (c) . (d) .

Figure 2: Fish orientation demonstration: (a) original fish image; (b) fish boundary after
applying the gaussian filter; (c) curvature along fish boundary; (d) oriented fish image.

This method achieved a stable accuracy (95%) in finding the tail side in 1000 hand-labeled
images. This curvature orientation method selects the relative curvature center which is invari-
ant to the contour scale change. After this, 66 types of features are extracted. These features
are a combination of color, shape and texture properties in different parts of the fish such as
tail/head/top/bottom, as well as the whole fish. We use normalized color histogram in the
Red&Green channel and the Hue component in HSV color space. These color features are
normalized to minimize the influence of illumination changes. We recompute the range of
every bin according to the average distribution over all samples and map them into an 11-bin
histogram to take full advantage of all bins, as shown below:

B̃i =

ai+1∑
j=ai

Bj s.t. ai = min{X ∈ N+‖ΣX
j=1Bj ≥

i

11
} (11)

where Bj, j ∈ {1, ..., 50} is the original color histogram bin, Bj, j ∈ {1, ..., 50} is the
averaged histogram over all samples and B̃i, i ∈ {1, ..., 11} is the recomputed bin.

In order to describe the fish texture, we calculate the co-occurrence matrix, Fourier de-
scriptor and Gabor filter. The grey level co-occurrence matrices describe the co-occurrence
frequency of two grey scale pixels at a given distance d [7]:

C∆u,∆v(i, j) =
n∑
p=1

m∑
q=1

{
1 if I(p, q) = i and I(p+ ∆u, q + ∆v) = j

0, otherwise
(12)

The frequency is calculated for several orientations λ. Moreover we compute contrast, correla-
tion, energy, entropy, homogeneity, variance, inverse difference moment, cluster shade, cluster
prominence, max probability, auto correlation and dissimilarity. The histogram of the oriented
gradients and moment invariants, as well as affine moment invariants, are employed as the
shape’s features. Furthermore, some specific features like tail/head area ratio, tail/body area
ratio, etc. are also included. All features are normalized by subtracting the mean and divided
by the standard deviation (z-score normalized).
The fish recognition module was tested on 3179 fish images with a 6-fold cross validation
procedure, sequential forward feature selection procedure and hierarchical tree as classifier
achieving an average performance of over 90% on 10 fish species.

2.3 Fish Behaviour Classification
Fish behavior understanding is of key importance for marine biologists since changes in

behavior patterns (e.g. finding abnormalities and/or detecting distinctive behaviours of different
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species) might be correlated to environmental effects such as pollution and climate change.
Whilst human behaviour understanding is one of the most exciting and explored topics of recent
research in computer vision and multimedia, relatively little has been done to understand animal
behaviour.
Most of the human-centered applications exploit as features for behaviour modeling and learn-
ing, information derived from a direct representation of the scene (e.g. visual concepts), since
trajectories, silhouettes and, more in general, object part positions may be very sensitive to
viewpoint changes [8]. On the contrary, these features seem to work better on the animal domain
due to the structure of the animals’ bodies (e.g. fish body is less structured than human body) [9]
and to the fact the cameras are rather static (e.g. it is not easy and handy to change viewpoints
of cameras in the underwater domain). According to this, we have employed trajectory features
to model and describe fish behaviour.
However, one of the main problems in the analysis of trajectories is finding an appropriate
way of representing them. The typical point-sequence representation, although it contains all
the information describing the movement of an object, is often difficult to work with, since
comparing different-length trajectories implies a normalization of the number of points, with
the consequent risk of over- or under-sampling; moreover, it is not practical to represent a
generic motion pattern as a sequence of points. Histograms of position, speed, orientation, etc.
may also be employed to describe trajectories, but they lose all temporal information, which is
an essential part of the pattern recognition process. On the contrary, HMMs are often used in
the description of trajectories, since they encode intrinsically spatio-temporal sequences of data
and also provide intuitive algorithms to generate sample trajectories and to check whether an
input trajectory matches the pattern learned by the HMM.
Aiming the scope of F4K, trajectory analysis has been adopted for prominent activity recog-
nition and abnormal behavior detection. In detail, HMMs were adopted both for fish species
behaviour (such as solitary behaviour, pairing, etc..) recognition and also for identifying uncom-
mon trajectories. Beyond the HMM-based approach, anomaly detection was carried out also by
a rule-based trajectory filtering mechanism, which aims at extracting normal fish trajectories as
much as possible (ideally all) while rejecting abnormal trajectories.

2.3.1 HMM Modeling of Fish Trajectories

A Hidden Markov Model (HMM) is a stochastic model describing a Markovian process
where the states are not directly observable, differently from a regular Markov chain. The esti-
mation of the current state is then performed by analysing the system’s output variables, which
depend on the current state: assuming discrete output variables, each state has a probability
distribution over the values these variables can assume, hence by analysing the output sequences
it is possible to obtain the information necessary for the estimation of the state sequence. HMMs
can be trained from output sequences, making them especially appropriate for temporal pattern
recognition [10]. The parameters of an n-state HMM with m discrete output variables are:

• Prior distribution π: probability for the initialization of the HMM’s first state.

• State transition probabilities A: an n × n matrix whose ai,j element is the probability of
going from state i to state j.

• Emission distributions B: an n ×m matrix whose bi,j element is the probability that, in
state i, the output token will be j.
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ID Fish Species Behaviour Trajectories
DR S Dascyllus Reticulatus Solitary 104
CM S Chromis Margaritifer Solitary 106
PD S Plectrogly-Phidodon dickii Solitary 95
PM S Pomacentrus Moluccenis Solitary 60
CT S Chaetodon Trifascialis Solitary 57
SB S Scolopsis Bilineate Solitary 237
AC S Amphiprion Clarkii Solitary 63
SF S Siganus Fuscescens Solitary 51

DR P Dascyllus Reticulatus Pairing 104
CM P Chromis Margaritifer Pairing 144
PD P Plectrogly-Phidodon dickii Pairing 138
CT S Chaetodon Trifascialis Pairing 90
SB P Scolopsis Bilineate Pairing 104

Table 1: Ground Truth Trajectories for Fish Species

The set of the three model matrices is typically referred to as λ. Of course, the structure and
dimensions of these matrices can vary if there are multiple output variables or if the distribution
is continuous, as is in the fish case. A detailed description of continuous-output HMMs using
mixtures of Gaussians is out of the scope of this document and can be found in [10].
In this context we extend each fish trajectory T = {(x0, y0) , (x1, y1) , ..., (xn, yn)} (i.e. the
sequence of centroid coordinates provided by the tracking algorithm) with an HMM, whose
output variables are position coordinates, speed and direction of the fish, modeled by mixtures
of Gaussians. Differently from the traditional approach, we do not force the states of the model
to match real world locations, instead we let the HMM learn its own internal configuration by
applying the Baum-Welch algorithm and feeding a trajectory or a set of trajectories as input.
Moreover, we do not apply the state transition probability as in [11] because it does not hold for
3D unconstrained motion such as fish movement. All states have the same initial probability.
This HMM based fish description has been applied both for learning fish-species behaviour
(solitary, pairing, etc.) and for detecting uncommon trajectories which may be either actual
anomalous fish behaviour to be investigated by marine biologists or errors of the tracker.
In the former case, we have employed a species related behaviour recognition. For each fish
species and for each behaviour type shown in Table 1, we trained a Hidden Markov Model
specialised in the recognition of the corresponding trajectory patterns. Each HMM was trained
using the Baum-Welch algorithm, and the number of states and output mixtures were both set
to 4.

Table 1 also shows the number of ground truth-trajectories labeled for each of the considered
combinations. For each HMM, 70% of the corresponding events were used for training and
the rest 30% for testing, meaning that the trajectories classification module was trained on
947 trajectories and tested on the remaining 406 trajectories. Table 2 shows the classification
performance of each single HMM, in terms of detection rate (DR) and false alarm rate (FAR)
given in percentage. The classes being detected are the ones of Table 1.

For anomaly detection, after modeling trajectories through HMM, trajectory clusters rep-
resenting common paths are built and then the trajectories that do not match the common
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ID DR FAR
DR S 70.9% 35.7%
CM S 71.8% 39.1%
PD S 72.4% 33.3%
PM S 100.0% 33.3%
CT S 100.0% 33.3%
SB S 77.4% 41.5%
AC S 73.6% 0.0%
SF S 100.0% 0.0%

DR P 75.0% 27.7%
CM P 73.9% 30.7%
PD P 75.0% 14.2%
CT S 71.4% 25.0%
SB P 73.3% 33.3%

Average 81.9% 24.11%

Table 2: Trajectory classification performance by species and event type.

behaviour (described by means of the above clusters) are considered “unusual”. In order
to represent the trajectories in a format more appropriate to clustering than HMMs, Multi-
Dimensional Scaling (MDS) [12] is applied, which projects HMMs to a relatively short vector
space, while maintaining the distances in the original HMM space. Since MDS exploits a dis-
tance matrix among input data to reduce the original space, we have introduced a probabilistic
metric to compare HMMs describing trajectories. If λ1 and λ2 are the HMM parameters which
model trajectories O1 and O2, we adopt Juang and Rabiner’s approach [13] in defining the
(asymmetric) distance D (λ1, λ2) as:

D (λ1, λ2) = [log L (O1|λ1)− log L (O1|λ2)] (13)

where L (Ox|λy) is the probability that trajectory Ox is modeled by λy. Since equation ( 13) is
not symmetric, an averaged distance is computed as:

Dave (λ1, λ2) =
1

2
(D (λ1, λ2) +D (λ2, λ1)) (14)

In order to avoid errors with short data sequences, the HMM parameters λk for a single
trajectory are interpolated (linear interpolation between the π, A, and B matrices) with λall,
representing the HMM parameters obtained by training a model with all trajectories in the
training set:

πk ← βπk + (1− β) πall

Ak ← βAk + (1− β)Aall

Bk ← βBk + (1− β)Ball

(15)

The MDS algorithm takes as input a distance matrix D, where each element di,j is equal
to Dave (λi, λj). Starting from D, a B matrix (which projects the original points into points
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whose barycentric coordinates are the origin) is computed, whose eigenvalues and eigenvectors
are then employed to compute the projected trajectory vectors (details are described in [12]).
These vectors are then clustered using unsupervised K-means algorithm [14]. We perform two
clustering cycles: one to filter out outliers from the training dataset and the second one to build
the clusters of common paths which are then used to detect anomalous trajectories. To recap,
the employed steps for anomalous trajectory detection are:

• First, trajectory modeling through HMM

• Clustering of the HMMs modeling of the input trajectories (training data set) into k
clusters.

• Train k HMMs with the trajectories in each cluster.

• For each trajectory, detect it as anomalous if the maximum likelihood between it and the
k HMMs is lower than a threshold.

• Re-clustering of the input trajectories training data set into k clusters, leaving out the
trajectories identified as anomalous by the previous step. This step makes the final clusters
more accurate and with less variance around their centroids.

The resulting k HMMs are then used to evaluate the likelihood that a test trajectory belongs
to one of the common path clusters, and if the maximum likelihood is smaller than a threshold,
the trajectory is labeled as anomalous.
We performed several tests in order to investigate the best configuration of the HMM/K-means
system to identify incorrect trajectories. The training set Ttrain was made up of 300 correct fish
trajectories with lengths between 5 and 30 points, manually selected from the tracking results
on 10 underwater videos (320×240 resolution at 5 fps) from the F4K repository. The test set
used to evaluate the system consisted of 3700 trajectories, with uniformly distributed lengths
between 3 and 50, equally divided into correct and erroneous trajectories.
Since the output results depend on the HMMs’ parameters, we performed a parametric analysis
of the performance in order to find the best HMM configuration for the target we are dealing
with. The first HMM parameter we analyzed was the number of iterations for the Baum-Welch
algorithm used to train the models. We found out that, for HMMs built from a reasonable
number of trajectories (for example, those representing whole clusters), 45 iterations was a good
compromise between computation time and the maximization of the probability that trajectories
in the training set matched that HMM. However, for HMM representing single trajectories, this
value resulted to be too high, because states transition probabilities would “flatten”, practically
making states equiprobable. Moreover, whichever smaller number of iterations we applied, the
input data sequence was too short to make the resulting HMM effectively learn the trajectory
pattern. The solution we found to this problem was to train the single-trajectory HMM with 15
iterations, and interpolating it with the HMM parameters obtained by learning all trajectories in
the training set.
After setting the number of training iterations, the next parameter we analyzed was the number
of clusters. We ran a few simulations, with varying HMM parameters (the number of states
and output mixtures), and applied the method described in [14] to estimate the optimal number
of clusters. According to most of these simulations, 3 clusters were enough to represent the
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HMM configuration Results

S M T DR FAR

5 4 -100 55.6% 36.7%
5 4 -120 21.0% 3.1%
5 16 -100 57.3% 32.7%
5 16 -120 24.3% 7.1%

15 4 -100 55.0% 28.61%
15 4 -120 23.9% 2.0%
25 4 -100 54.2% 29.6%
25 4 -120 26.1% 5.1%
10 4 -100 18.9% 1.0%
10 4 -120 22.4% 0.0%
15 16 -100 59.6% 29.5%
15 16 -110 39.2% 13.3%

Table 3: Performance of the system with different HMM configurations.

variability of the training set (and no simulations gave a result smaller than 2 or larger than 4),
so we set the number of clusters for the following tests to 3.

Our first test session consisted in varying HMM parameters to gather some preliminary
information on the most promising configuration. Table 3 shows the best performance of the
system we achieved by varying HMM parameters: in the left group of columns, S is the number
of HMM states, M is the number of output mixtures and T is the minimum log-likelihood
threshold used to decide whether a given trajectory matches at least one cluster; on the right
columns, for each configuration we show the corresponding detection rate (DR, the percentage
of correctly identified anomalous trajectories) and the false alarm rate (FAR, the percentage of
correct trajectories identified as anomalous).

The results we obtained with these first tests showed the difficulty in choosing a set of HMM
parameters which provided satisfactory percentages of both true positives and false negatives.
The best HMM configuration seemed to be the ones with 15 states and 16 mixtures of Gaussians,
and the most discriminating variable was clearly the probability threshold.
In order to understand if the HMM parameters were somehow related to the trajectory length,
we carried out a second run of experiments which consisted in building several test sets, each
containing the test set trajectories having lengths included in a certain range (for example,
Ttest,≤10 contained the test trajectories with up to 10 points, Ttest,11−15 contained trajectories
with 11 to 15 points, and so on), and finding for each of them the best probability threshold.
The HMM’s numbers of states and number of output mixtures were 15 and 16, since these
values yielded the best results in the previous test. Table 4 shows the best threshold for each
range, and the corresponding detection rate and false alarm rate for the each of the new test sets.

It is clear how the trajectory length actually influences the capability of HMMs to match
them, and how a length-depending threshold allows to obtain a much higher accuracy than
using a fixed threshold.
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Length range T DR FAR

≤10 -80 88.8% 4.3%
11-15 -100 80.2% 14.2%
16-20 -160 85.4% 29.2%
21-25 -190 96.2% 16.7%
≥30 -230 82.4% 16.6%

Table 4: Performance of the system when the threshold is varied according to the length of the
training and test trajectories.

2.3.2 Rule Based Filtering Mechanism for Anomaly Detection

This module aims at identifying trajectory features which are then used in a subsequent
refinement mechanism to filter out the common trajectories (e.g., fish freely swimming), thus
providing as output the anomalous ones. In this case, trajectories are defined as sequence of
the centroids of fish bounding boxes in consecutive frames. The block diagram of the filtering
mechanism is shown in Fig. 3. In this context, first, all fish trajectories are filtered by filter1
(event rule 1). In each step, the trajectories satisfying the rule are defined as normal trajectories
(such as Normal1, Normal2). The trajectories which do not satisfy the rule are called the
remainders of the corresponding filter and are used as inputs to the next filter. This is continued
until all the filters are used. At the end, the remainders of all filters are our abnormal trajectories
(which is a set with many fewer normal trajectories). Filters can be applied in any order since
the rules of filters are independent.
Primitive motions are defined in two categories: straight and/or cross movements and being
stationary. Straight and/or cross movements are defined in three ways: the center of fish
bounding boxes over the whole trajectory is inside an area (search area) which is determined
by the first detection’s bounding box boundary while the fish is going only one direction such
as left to right, right to left, up to down and down to up, the center of the fish bounding box
in frame f + i is inside an area which is determined by the detection bounding box in frame
f + i − 1 for i = 1 to N (N represents trajectory lengths) while the fish is going only in one
direction such as left to right, right to left, up to down and down to up, the center of the fish
bounding boxes over whole trajectory are inside an area which is determined by the first and
last bounding box boundaries while fish is going only in one direction such as left to right, right
to left, up to down and down to up. Being stationary is defined as the state that the center of the
fish bounding box is inside an area which is defined in terms of first detection bounding box.
Filters are defined as one, two and three length combinations of these primitive motions such
as moving left to right (length is one), moving left to right and then being stationary (length is
two), moving right to left and then down to up (length is two), being stationary for a while, then
moving up to down and then right to left (length is three) etc. Similar behaviors like going left
to right and right to left are modeled by same filter and altogether 21 rules were used.

To test the proposed method, 271 underwater videos including 4 different locations and
2370 trajectories (45 abnormal, 2335 normal) belonging to 9 different species were used (see
Fig. 4). The normal and unusual behaviors were determined based on visual inspection. In this
context, freely swimming fish was considered as normal behavior since this is the most frequent
behavior in the data set. The abnormal or rare behaviors were: stationary fish for a long time
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Figure 3: Block diagram of the filtering mechanism for trajectory anomaly detection

Figure 4: Dataset: normal (blue) and unusual (red) trajectories
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inside of coral (this kind of a behavior assumed to be an eating behavior hence differentiated
from swimming), fish biting at coral, fish suddenly (in one frame) diving, fish suddenly (in
one frame) changing direction. To evaluate the proposed filtering mechanism a 5 fold cross
validation test was performed. Train and test sets were constituted randomly while the normal
and abnormal trajectories were distributed equally. In the training phase, for each filter the best
parameters (search area for straight and/or cross movements, search area for being stationary
and using only definition 1, 2, 3, definitions 1 and 2 together, 2 and 3 together, 1, 2 and 3
together) were found and those were used in the test phase. When finding the best parameter
values those which did not filter out any abnormal trajectories were chosen. In the case of
having more than one parameter set which did not filter out any abnormal trajectories, the one
that filtered the most normal trajectories was selected. As a result, this method filtered out
nearly half of normal trajectories with 99% precision and 25% of abnormal trajectories which
ideally should be zero. However, we believe that this is still a good result since fish species
and location implicitly modeled by filters, all abnormalities treated uniformly which makes the
proposed method general, agnostic to abnormality type and not data dependent since it has
already tested with varying camera parameters and geographic locations.

3 Environment Description
The Fish4Knowledge repository contains about 500.000 videos (10 minute videoclips at

different spatial and temporal resolutions) showing different scenes (different cameras, changes
of viewpoints, etc..) under different conditions. Automatic analysis of the recorded videos
involving scene classification and segmentation has been, therefore, necessary to support both
higher analysis levels (e.g. fish behaviour understanding) and underwater monitoring system
maintenance. In particular, identifying the components of the analysed scene and classifying
the scene itself would allow marine biologists to study how fish interact with the surrounding
environment and behave under particular conditions (e.g. during typhoons, storms, etc.). In
addition, often video quality is compromised by i) the presence of algae on camera lens (due to
the direct contact of seawater with the lens), ii) encoding problems due to transmission band-
width limit, and iii) atmospheric phenomena (e.g. typhoon), that may displace or disconnect the
cameras resulting either in black videos or in recording scenes of no interest. All these cases
must be identified and the maintenance service informed as promptly as possible in order to
restore the system and keep the information flow.
In fact, each camera videostream depicts many different scenes due to camera movements.
Environment description is carried out in the F4K scope at different granularity levels according
to the nature of camera video-stream (see Fig. 5). In detail, it involves three main steps: 1)
video segmentation, which aims at splitting the video-stream of operational cameras into a
set of meaningful and manageable segments (scenes) used as basic elements for higher level
information (e.g. location of fish congregation), 2) video classification operating on each
videoclip which supports live fish behaviour understanding and uncertainty management in
the user interface for marine biologists and underwater monitoring system maintenance, and
3) image segmentation which aims at identifying background objects such as rocks, open sea,
seabed, etc. While the video classification approach is reliable and ready for production run,
video and image segmentation approaches are still under development.
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Figure 5: Videostream anatomy

3.1 Video and Image Segmentation
Temporal video segmentation is the first step towards automatic analysis of digital videos

for underwater scene understanding and aims at identifying different scenes which correspond
to abrupt transitions among consecutive frames due to camera movements. Our scene detection
compares the histogram of blocks in consecutive frames to reduce sensitivity to slight camera
and object movements.
Our block-based-histogram comparison approach divides the videoframe into N × N blocks
and then compares color distributions of the blocks in consecutive frames. For each block k,
we compute the 2-dimensional distribution of I and Q for the Y IQ color space, a∗ and b∗
for the L ∗ a ∗ b∗ color space, and hue and chroma components for the Munsell space. The
likelihood between the two compared blocks is computed as the weighted average LR of the
three following values on the considered spaces:

• Dk
1(i, i+ 1) =

∑n
j=1 |Hi(j)−Hi+1(j)|

• Dk
2(i, i+ 1) = 1−

∑n
j=1min(Hi(j),Hi+1(j))∑n
j=1max(Hi(j),Hi+1(j))

• Dk
3(i, i+ 1) =

∑n
j=1

∑
k∈N(k) w(k) · |Hi(j)−Hi+1(k)|

If the likelihood ratio LR between the compared blocks of consecutive frames is smaller
than a threshold Tk then the block is labeled. A scene change is identified if the number of
labeled blocks is over a threshold Tf . Fig. 6 shows an example of the proposed video segmen-
tation approach, which at the current stage is suboptimal, as demonstrated by the experimental
results.

We tested the above approach on 1837 videos of one operational camera (i.e. NPP3 camera
2). We manually labeled 98 scene changes. On this dataset we achieved a precision of 0.803
and a recall of 0.887. This shows that the proposed method performs fairly well in detecting
scene changes but it also misclassifies gradual transitions and slight camera movements as scene
changes.
Once scene changes are detected, we apply image segmentation to provide a comprehensive
description of the background objects. At the current stage, we adopted the image segmentation
method proposed by Borsch et al. in [15], extending the feature extraction phase by adding
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Figure 6: Example of Video segmentation

Version 2.0; 2012–09–30 Page 18 of 23 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable D1.2

SIFT [16] object corners since they proved to be reliable descriptors.
We tested the image segmentation approach on 79 images (manually segmented) and 5 object
classes: “Sea”, “Rock”, “Coral”, “Sea Bed” and “Unknown” and the results are shown in Table
5.

Sea Rock Coral Sea Bed Unknown

Sea 97.32% 0.37% 0.93% 0% 2.55%
Rock 0% 79.55% 9.12% 4.59% 6.74%
Coral 0% 3.72% 86.70% 3.04% 6.54%

Sea Bed 0% 13.23% 13.97% 69.52% 3.28%
Unknown 4.21% 1.87% 1.59% 1.21% 91.12%

Table 5: Confusion matrix of the adopted image segmentation approach

3.2 Video Classification
The strategy devised for scene classification resorts to the Bag of Features (BoF ) approach

[17] and works at video level, i.e., given an input video, a model vector sequence is obtained
and its classification as a specific scene class is carried out by means of SVM operating on the
extracted descriptors.
The employed features extraction method computes for each video a set of features on a subset
of video frames and the flowchart is shown in Fig.7. More specifically, for each frame, we
compute non-rotation-invariant SIFT descriptors [16] of image corners detected with the Harris
approach; then the image is described as the histogram of the squared distances between the
set of computed features and the centroids of descriptor clusters previously computed on the
specific scene classes.

Figure 7: Flowchart of the BoF approach for video classification

The video classification is carried out by grabbing a subset of frames (from 15 to 100) from
the video under analysis, extracting the BoF and then feeding it to a set of SVMs, previously
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Figure 8: ROC Curves per Video class

Video Class Average Correct Rate Standard Deviation

Algae 0.996 0.0008
Murky 0.968 0.0032

Encoding 0.987 0.0016
Storm 0.982 0.003

Typhoon 1 0
Normal 0.998 0.001

Table 6: Average Classification Performance per Video class

trained on the scene classes we want to identify (one SVM for one scene class). We tested our
approach on a set of 102 videos (20 frames per video, 2040 frames), manually labeled into 6
classes: “Normal”, “Encoding Problem”,“Murky Water”, “Algae on Camera Lens”, “Typhoon”
and “Storm”, with a 5-fold cross validation procedure and we achieved an average performance
in terms of correct rate of 91%. Table 6 shows the achieved results for each video class, and
Fig. 8 shows the ROC curves per video class.

4 Conclusions
In this deliverable we described the work done for fish and environment property description

showing also for each set of employed features its utility in supporting a specific image analysis
task. For fish description, the features adopted for fish/background objects classification and
fish species recognition are quite reliable and they were extensively tested on large datasets,
showing promising results. Fish behaviour understanding, instead, is still at a preliminary stage
since it was applied to a limited set of behaviours (solitary and pairing for a few species) due to
the difficulty to gather ground truth data and to the sensitivity of the HMM based approach to
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the fish trajectory length.
Finally, we also investigated techniques for environment description which rely on video seg-
mentation to identify scene changes, scene classification to understand how the recorded scenes
change over time due to the environmental factors and scene segmentation which aim at iden-
tifying scene areas such as rocks, open sea, etc. The scene classification approach is ready
for production run, whereas the approaches for temporal video segmentation and image seg-
mentation are suboptimal and must be improved. In detail, we are also considering to adopt
HMM to model scene changes thus avoiding using an extrinsic scene representation of frame
changes which is too sensitive to the used thresholds. For image segmentation, we will follow
the approach proposed by Bosch et al. in [15] suitably extended with new set of features
and to adopt Markov Random Fields (MRF) spatio-temporal regularisation [18] to refine the
output classification. Of course, new approaches will be also developed in order to investigate
efficiency gains.
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