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Reinforcement Learning

From Stimulus to Action
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Usually there are many stimuli, and many possible actions. How to decide which action

to take?
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Reinforcement Learning

Reinforcement Learning: Aims

@ To keep track of complex, high-dimensional environments (states).
e To bridge time delays between action(s) and outcomes.

@ To assign value to actions/states and remember these to choose appropriate
actions.

(Image is an example from Google Research, 2019)
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Reinforcement Learning

Reinforcement Learning: Approach
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@ RL agents have explicit goals, manifested through rewards (or punishments).

@ RL agents act on the environment and collect information to inform the next
action.
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Reinforcement Learning

Learning associations: Classical and Operant Conditioning

Operant Conditioning
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Classical conditioning: unconditioned stimulus (food) - conditioned stimulus (bell)
Operant conditioning: an action / conditioned response (lever press) - reward (food)
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Reinforcement Learning

Operant Conditioning
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Law of effect (Edward Thorndike):

CR more frequent (rare) when it elicits a positive (negative) stimulus.
Reinforcers: Stimuli increasing behaviour rate

Punishers: Stimuli decreasing behaviour rate
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Reinforcement Learning

Predicting action outcomes (Rescorla-Wagner Rule)

The value VA of action A over time changes according to:

VA = VA& +a(R- VA

R is the reward, « the learning rate, and § = R — VtA_1 is called the prediction error.
Also called: §-rule.
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Reinforcement Learning

The Rescorla-Wagner Rule for Conditioning
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VA=VA +a(R- VL)

First R was set to —1, and then changed to +1 (o = 0.1).
So the key quantity of the model is the prediction error. Is it computed in the brain?
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Reinforcement Learning

Prediction Errors in the Brain
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Visual discrimination task with reward: Dopamine neurons of the substantia nigra appear to
signal the prediction error as predicted by the Rescorla-Wagner rule.
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature neuroscience,

1(4), 304-309.
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Reinforcement Learning
Delayed rewards are difficult in practise

reward
Agent action , Environment
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How to know which past action was responsible for an observed outcome? This is
called the temporal credit assignment problem.
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Reinforcement Learning

Reward Learning in the VTA

Do dopamine neurons report an error
in the prediction of reward?
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First the neurons signal a prediction error. Once learned, the same neurons now signal
reward at the time of the cue.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology.
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Reinforcement Learning
TD learning

We have states s;, rewards r; and the value of the states V/(s).

Prediction error:
Ot = req1 +7V(se1) — V(st)

Future potential rewards are taken into account, but discounted by ~.

Value update:
V(st) < V(st) + ade

This iteratively learns a stable state / value map (but takes time).
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Reinforcement Learning

Q-Learning: TD Learning + choosing actions
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Discount factor: v = 0.8. For state 2, it is now better to accept negative reward first,
as more reward is on the horizon later.
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Reinforcement Learning

Action Learning in the Brain
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Reinforcement Learning

Reinforcement Learning Successes

@ Learns to play complex board and video games (and even learns rules).

e Fine-tune large language models (ChatGPT).
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Reinforcement Learning

AlphaGo Zero
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@ Knows game rules.

@ Trained by playing against itself on 64 GPU workers and 19 CPU parameter
servers. Best models are used as new opponents for self-play.

@ 0.4s thinking time/move, 4.9 million games played; 216,000 moves/day. About 3
days training in total.

e Comparison to human-trained supervised model (move prediction).
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Reinforcement Learning
Summary

@ Evidence that the brain learns to predict the outcomes of actions and stimuli.

@ Responses corresponding to prediction errors are observed in the dopaminergic
system.

@ RL assumes that prediction errors reflects the learning of goal-directed behaviour,
represented through value.

@ RL finds the behaviours that maximises value.

@ This works well in simple examples, but is data-inefficient for problems with real
world complexity.
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