The Leaky Integrate and Fire (LIF) Model

$$\tau_m \frac{dV(t)}{dt} = -(V(t) - E_L) + R_i I(t)$$

Membrane voltage: V(t)

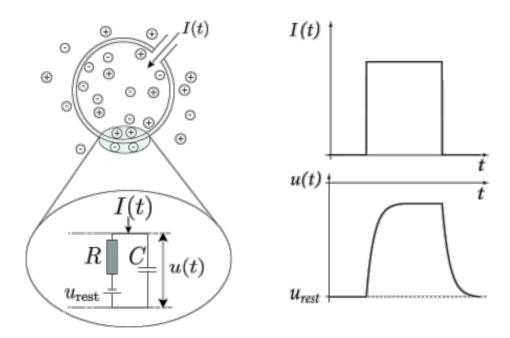
Membrane time constant: τ_m

Resting potential: E_L

Input resistance: R_i

External current: I(t)

Integrating the LIF Model


$$\frac{dV(t)}{dt} = \frac{1}{\tau_m} \left(-(V(t) - E_L) + R_i I(t) \right)$$

For $\Delta \longrightarrow 0$ this can be solved by:

$$V(t) = V(t - \Delta) + \frac{\Delta}{\tau_m} \left(-V(t) + E_L - R_i I(t) \right)$$

This is a good approximation if $\ \Delta \ll au_m$

Example for a step current

