The Brain
Informatics 1 Cognitive Science

Matthias Hennig

School of Informatics
University of Edinburgh
mhennig@inf.ed.ac.uk
Side-note: Cartesian fallacies

- Descartes said reliable perception proves the existence of a supernatural force (e.g. god). Premise: supernatural force exists
- He also said this force would ensure reliable perception. Premise: perception is reliable
- This is circular reasoning.
- We see the same occasionally in the Cognitive Sciences, for example:
- We may say the brain builds a representation of some sensory information, e.g. a chess board.
- To decide on the next move, the brain has to apply the rules of the game. Who does this?
- If not an immaterial mind, it has to be the brain - a brain in the brain?
- This is an infinite regress - one explains rules in terms of the same rules.
The Human Brain

- Around $90 \cdot 10^9$ neurons, 10^{14} connections between them.
 (African elephant: $300 \cdot 10^9$ neurons)
- Connected to the rest of the body through brainstem / spinal cord.
- Typical weight is 1.2-1.5kg (about 2% of body mass), but it consumes 20% of the energy we expend.
The Central and Peripheral Nervous System
The cortex is the outer layer of the brain and highly convoluted → large surface area

The thalamus interconnects different areas of the cortex

Beneath it we find the midbrain, cerebellum and other structures
Grey and White Matter

- Grey (pink when living) matter: contains nerve cells
- White matter: contains connections between cells
The two Hemispheres

- Left hemisphere: analytical tasks, usually speech and language
- Right hemisphere: retrieval/maintenance of information, e.g. map reading
- The hemispheres are connected by the corpus callosum
- These connections are not essential for some common brain functions, but required for many tasks and learning.
Anatomical references

- superior: above - inferior: below
- proximal: close - distal: away
- superficial: near the surface - deep: inside
- temporal: near the temporal bone
- parietal: near the parietal bone
- occipital: near the occipital bone
Cortical Landmarks

4 main lobes: frontal, temporal, parietal, occipital
Bigger bodies, bigger brains

How to assess brain function

- Historically, the autopsy of patients with neurological deficits has given insights into functional relevance of specific brain regions.
- This dates back to the middle ages, when Islamic medicine discovered the association between neurological symptoms and brain injury.
- The more detailed study of anatomy (Camillo Golgi and Ramón y Cajal, 1890s) and discovery of electrical activity in the brain (Luigi Galvani, Lucia Galeazzi Galvani and Giovanni Aldini) started modern neuroscience.
- Today non-invasive methods such as fMRI scanners or EEG can report where activity in the brain changes during behaviour.
Cytoarchitecture of the Cortex

- Between 2 and 4 mm thick and overlying white matter.
- A distinct 6-layer organisation.
- Different regions of the cortex have different cytoarchitecture.
Brodmann’s areas
Cytoarchitecture reflects the functional specialisation of the Cortex

Source: F.R. Amthor; A.B. Thibert; D.G. Standeert, E.D. Robertson, Essentials of Modern Neuroscience
Copyright © 2020 McGraw-Hill. All rights reserved.
The Allen Brain Atlas
An online resource to the brain.

http://atlas.brain-map.org/
The Frontal Cortex

- Highly connected to the rest of the brain.
- Required for many executive functions: guide and plan behaviour, switch behaviours if required.
- Social cognition and (perhaps) consciousness.
Consequences of pre-frontal cortex damage

Patient Kryl. Intracerebral tumor of the left frontal lobe.

Patient Giash. Intracerebral tumor of the left frontal lobe.

Patient Pas. Abscess of the right frontal lobe.

Patient Step. Intracerebral tumor of the left frontal lobe.

FIGURE 66 Disturbance of the performance of single tasks as a result of pathological inertia of action in patients with extensive lesions of the frontal lobes.
The Sensory Cortices

- Occipital: vision
- Temporal: Auditory and olfaction
- Parietal: somatosensory cortex - touch, temperature, pain, proprioceptive information and some executive function
The Motor System

- Includes the spinal cord, the cerebellum, brainstem and motor cortices.
- Spinal cord: movement initiation
- Brainstem: basic and largely automatic movements (breathing, swallowing, eye movements)
- Motor cortex: more complex movements, expression of emotion
The representation of the body is topographically organised. Yet, the amount of cortex dedicated to different body parts differs significantly.
Other brain areas

- **Cerebellum (small brain):** timing, in particular motor function
 - Damage results in loss of precise motor function:
 - https://www.youtube.com/watch?v=Gn3AcxSn-Dc

- **Hippocampus (seahorse):** episodic memory, "buffer" for long term storage
 - Damage prevents new memories from being stored, leads to antero-grade amnesia
 - A famous case is Patient HM:
 - https://www.youtube.com/watch?v=EDPiH9xfMwU
 - https://www.youtube.com/watch?v=D7Ma7ixtDdM
The circular Connectogram, showing all brain areas in both hemispheres. Lobes: frontal lobe (fr), insular cortex (Ins), limbic lobe (Lim), temporal lobe (Tem), parietal lobe (Par), occipital lobe (Occ), subcortical structures (SbC), and cerebellum. The brainstem (BStem) is at the bottom.
Phineas Gage

- A 25-year old railroad construction supervisor.
- In 1848, an accident caused a tamping iron to shoot through his skull and brain in the left frontal area.
- The tamping iron landed point-first some 80 feet (25 m) away, “smeared with blood and brain”.
- Physician’s report: When I drove up he said, “Doctor, here is business enough for you.”
- Initially personality changes were reported, but he lived on for 12 years and recovered remarkably well.
Phineas Gage’s Brain Connectivity

Gage’s connectogram was severely affected, but the successful recovery suggests even the adult brain has remarkable plasticity and the ability to compensate for injury.
The elephant has 257 billion neurons, while we only have 86 billion!?
Elephant cortex: 5.6 billion neurons
Human cortex: 16 billion (9 billion in the gorilla)
A much higher neuron density in the human cortex
The elephant cerebellum has a disproportionately high neuron number
The brain has anatomically distinct parts, and many of these parts are further subdivided anatomically.

This anatomical division reflects functional specialisation.

Brain regions are highly interconnected (white matter).

Higher cognitive abilities depend critically on the cortex.