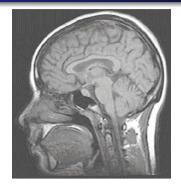
The Brain

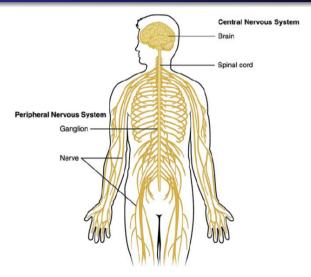
Informatics 1 Cognitive Science

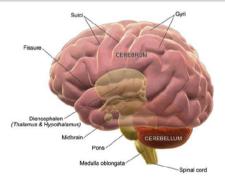

Matthias Hennig

School of Informatics University of Edinburgh mhennig@inf.ed.ac.uk

Side-note: Cartesian fallacies

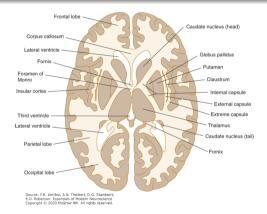
- Descartes said reliable perception proves the existence of a supernatural force (e.g. god).
 Premise: supernatural force exists
- He also said this force would ensure reliable perception. Premise: perception is reliable
- This is circular reasoning.
- We see the same occasionally in the Cognitive Sciences, for example:
- We may say the brain builds a representation of some sensory information, e.g. a chess board.
- To decide on the next move, the brain has to apply the rules of the game. Who does this?
- If not an immaterial mind, it has to be the brain a brain in the brain?
- This is an infinite regress one explains rules in terms of the same rules.


The Human Brain

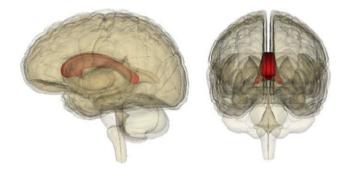

- Around $90 \cdot 10^9$ neurons, 10^{14} connections between them. (African elephant: $300 \cdot 10^9$ neurons)
- Connected to the rest of the body through brainstem / spinal cord.
- Typical weight is 1.2-1.5kg (about 2% of body mass), but it consumes 20% of the energy we expend.

3/26

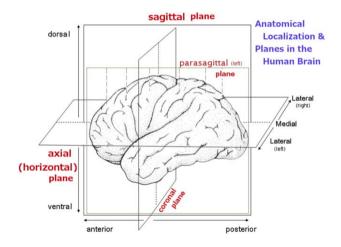
The Central and Peripheral Nervous System



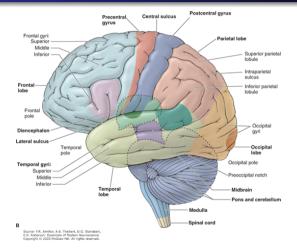
Anatomical sub-division of the Brain


- ullet The cortex is the outer layer of the brain and highly convoluted ightarrow large surface area
- The thalamus interconnects different areas of the cortex
- Beneath it we find the midbrain, cerebellum and other structures

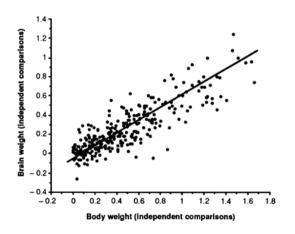
Grey and White Matter


- Grey (pink when living) matter: contains nerve cells
- White matter: contains connections between cells

The two Hemispheres


- Left hemisphere: analytical tasks, usually speech and language
- Right hemisphere: retrieval/maintenance of information, e.g. map reading
- The hemispheres are connected by the corpus callosum
- These connections are not essential for some common brain functions, but required for many tasks and learning

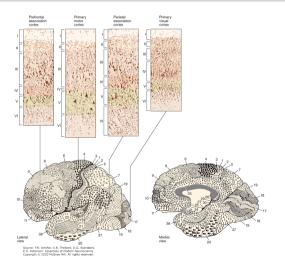
Anatomical references


- superior: above inferior: below
- proximal: close distal: away
- superficial: near the surface deep: inside
- temporal: near the temporal bone
- parietal: near the parietal bone
- occipital: near the occipital bone

Cortical Landmarks

4 main lobes: frontal, temporal, parietal, occipital

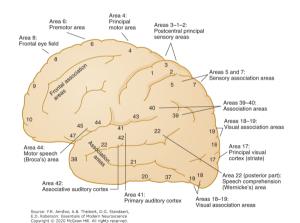
Bigger bodies, bigger brains



Harvey, P. H., & Krebs, J. R. (1990). Comparing brains. Science, 249(4965), 140-146.

How to assess brain function

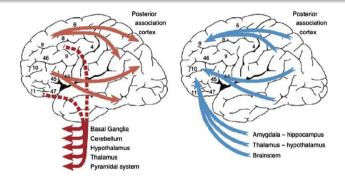
- Historically, the autopsy of patients with neurological deficits has given insights into functional relevance of specific brain regions.
- This dates back to the middle ages, when Islamic medicine discovered the association between neurological symptoms and brain injury.
- The more detailed study of anatomy (Camillo Golgi and Ramón y Cajal, 1890s) and discovery of electrical activity in the brain (Luigi Galvani, Lucia Galeazzi Galvani and Giovanni Aldini) started modern neuroscience.
- Today non-invasive methods such as fMRI scanners or EEG can report where activity in the brain changes during behaviour.


Cytoarchitecture of the Cortex

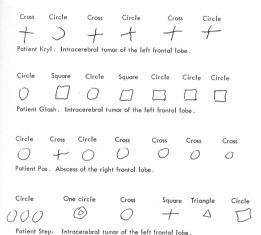
- Between 2 and 4 mm thick and overlying white matter.
- A distinct 6-layer organisation.
- Different regions of the cortex have different cytoarchitecture.

Brodmann's areas

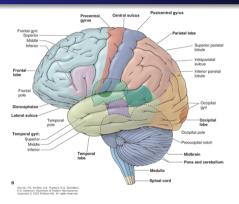
Cytoarchitecture reflects the functional specialisation of the Cortex


The Allen Brain Atlas

An online resource to the brain.

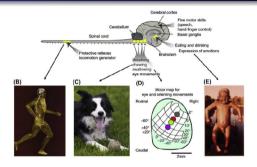

http://atlas.brain-map.org/

The Frontal Cortex

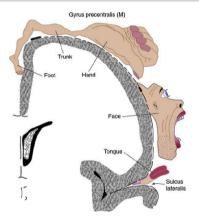


- Highly connected to the rest of the brain.
- Required for many executive functions: guide and plan behaviour, switch behaviours if required.
- Social cognition and (perhaps) consciousness.

Consequences of pre-frontal cortex damage



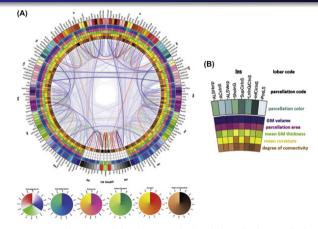
The Sensory Cortices


- Occipital: vision
- Temporal: Auditory and olfaction
- Parietal: somatosensory cortex touch, temperature, pain, proprioceptive information and some executive function

The Motor System

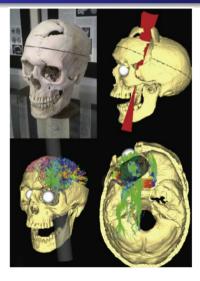
- Includes the spinal cord, the cerebellum, brainstem and motor cortices.
- Spinal cord: movement initiation
- Brainstem: basic and largely automatic movements (breathing, swallowing, eye movements)
- Motor cortex: more complex movements, expression of emotion

The Motor Homunculus

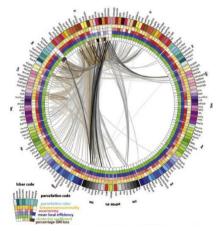


The representation of the body is topographically organised. Yet, the amount of cortex dedicated to different body parts differs significantly.

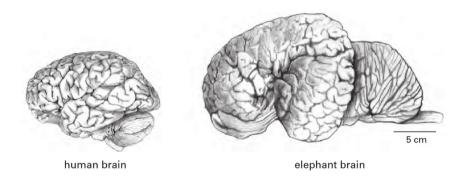
Other brain areas


- Cerebellum (small brain): timing, in particular motor function
 - damage results in loss of precise motor function: https://www.youtube.com/watch?v=Gn3AcxSn-Dc
- Hippocampus (seahorse): episodic memory, "buffer" for long term storage
 - damage prevents new memories from being stored, leads to antero-grade amnesia
 - A famous case is Patient HM: https://www.youtube.com/watch?v=EDPiH9xfMwU https://www.youtube.com/watch?v=D7Ma7ixtDdM

Brain Connectivity

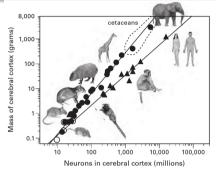

The circular Connectogram, showing all brain areas in both hemispheres. Lobes: frontal lobe (fr), insular cortex (Ins), limbic lobe (Lim), temporal lobe (Tem), parietal lobe (Par), occipital lobe (Occ), subcortical structures (SbC), and cerebellum. The brainstem (BStem) is at the bottom.

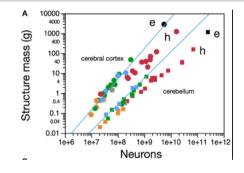
Phineas Gage


- A 25-year old railroad construction supervisor.
- In 1848, an accident caused a tamping iron to shoot through his skull and brain in the left frontal area.
- The tamping iron landed point-first some 80 feet (25 m) away, "smeared with blood and brain"
- Physician's report: When I drove up he said, "Doctor, here is business enough for you."
- Initially personality changes were reported, but he lived on for 12 years and recovered remarkably well.

Phineas Gage's Brain Connectivity

Gage's connectogram was severely affected, but the successful recovery suggests even the adult brain has remarkable plasticity and the ability to compensate for injury.


Brain Size again...



The elephant has 257 billion neurons, while we only have 86 billion!?

Herculano-Houzel, Suzana. The Human Advantage : A New Understanding of How Our Brain Became Remarkable, MIT Press, 2016.

Cortex Matters

- Elephant cortex: 5.6 billion neurons
- Human cortex: 16 billion (9 billion in the gorilla)
- A much higher neuron density in the human cortex
- The elephant cerebellum has a disproportionately high neuron number

Summary so far

- The brain has anatomically distinct parts, and many of these parts are further subdivided anatomically.
- This anatomical division reflects functional specialisation.
- Brain regions are highly interconnected (white matter).
- Higher cognitive abilities depend critically on the cortex.