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So far, we have focused on aspects of language acquisition:

e Transitional probabilities are useful for modeling word segmentation

e Bayes rule models how different probabilities can be combined: prior vs. likelihood
e We've applied this to model the acquisition of number concepts:

e simplicity prior: prefer hypotheses with fewer primitives
e likelihood: prefer the smallest hypothesis that's compatible with the data:

size principle

Today, we will look at language as a communication system. Notions from probability
and information theory will again be useful.



The Mathematical Theory of
Communication



The Mathematical Theory of Communication (Shannon, 1948)

e Communication: the transfer of information from a source to a destination.

e Communication is often not the goal of language use but a necessary subgoal.

Shannon's theory (now called Information Theory) deals with the efficient
encoding and decoding of messages.

Widely used in cognitive science, neuroscience, computer science.



The Mathematical Theory of Communication (Shannon, 1948)

Information
Source Transmitter Receiver Destination
Signal Received
Signal
Message Message
Noise
Source

e A source has a probability distribution over meanings P(m).

e A transmitter (or encoder) is a function that maps meanings to forms with
distribution P(f|m).

e A receiver (or decoder) is a function that maps forms to meanings with P(m|f).
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Reference Resolution: A demo
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Reference Resolution: A demo
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Reference Resolution: A demo
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Reference Resolution: A demo
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Information Theory Fundamentals



Information Theory Fundamentals

Information content (surprisal): a measure how unexpected an event is:

I(x) = — log, P(x)

If an event is highly predicted (unsurprising), it has low information content.
If an event is very unpredicted (surprising), it has high information content.

Entropy: a measure of the uncertainty about an outcome:

= P(x)I(x Z P(x) log, P(x)
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Information Theory Fundamentals

H(X) H(Y)

HX,Y)

Mutual information: The information shared between two variables.

I(M; F)=H(M)— H(M|F)

Conditional entropy: H(M|F): how deterministic is the mapping between from
forms to meanings.

If M and F are independent, H(M|F) = H(M).

If F deterministically maps to M, H(M|F) = 0.
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Information Theory Fundamentals
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Kullback-Leibler (KL) Divergence
The information gained by using distribution P compared to distribution Q.

KL(P||Q) = ZP 3
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Information Theory Fundamentals

https://app.wooclap.com/FUZTIE
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Principle of Least Effort



Information
Source Transmitter Receiver Destination
Signal Received
Signal
Message Message
Noise
Source

1. Are languages optimized for communicative efficiency?

2. Can we find efficiency effects in language processing?

16



Principle of Least Effort (Zipf, 1949)

Law of Abbreviation:

e Tools that are frequently used should be easier to use.

e Tools that are frequently used should be closer to you.
Law of Diminishing Returns:

e Frequently used tools should be versatile, i.e., have multiple uses.

e Frequently used tools should be used in concert rather than construct a specialized
tool.

e If a permutation of tools becomes too complicated, make a specialized tool.
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Are Frequent Words Easier to Use?

A shorter word is easier to produce. Are more frequent words shorter (Piantadosi et al.,

2011)?
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Are Frequent Words Easier to Use?

A shorter word is easier to produce. Are more frequent words shorter (Piantadosi et al.,

2011)?
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e Frequent words are shorter than infrequent words.
e The relationship is much stronger when we calculate it in terms of information
content (surprisal). 18



Are Frequent Words Closer Together?

N F Y N
John threw out the trash
Sent: A: Total depend length = 6

" VTN
John threw the trash out
Sentence B: Total dependency length = 7

4

LR

'\
John threw out the old trash sitting in the kitchen
Sentence C: Total dependency length = 14
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John threw the old trash sitting in the kitchen out
(Futrell et al., 2015) Sentence D: Total dependency length = 20 19



Are Frequent Words Closer Together?

Dependency length

(Futrell et al., 2015)
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Do Frequent Words Have More Functions?

Homophones

Same sounds but different meanings

Word Sense

A single meaning of a word
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Do Frequent Words Have More Functions?

Homophones

Same sounds but different meanings

Word Sense
A single meaning of a word

e Shorter words have more
meanings.
e More probable (frequent) words

have more meanings.

(Piantadosi et al., 2012)
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Principle of Least Effort

https://app.wooclap.com/FUZTIE
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Interim Summary

e Language as a communication system seems optimized for efficiency.
e Frequent words are:
e shorter in length
e closer to each other in sentences
e versatile in how they can be used
e Can we find efficiency effects also language processing, i.e., when we understand
language in real time?
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Examples: Reading and Speech



Processing Difficulty in Reading

Some sentences are harder to process than others, even though the words are the same:

(1)  The reporter that attacked the senator admitted the error.

(2)  The reporter that the senator attacked admitted the error.

The object relative clause (ORC) in (2) is more difficult to process than the subject
relative clause (SRC) in (1).

To be modeled: reading time differences on the relative clause verb and noun phrase
(Staub, 2010).
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Processing Difficulty in Reading

Empirical Data (Staub 2010, Expt 1)
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Processing Difficulty in Reading

Compare reading times for relative clauses against surprisal values:

Empirical Data (Staub 2010, Expt 1) Surprisal Predictions
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Surprisal successfully models only the difference at the NP. To model the difference at

the verb, we need to add a distance-based component (Demberg et al., 2013).
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General Effect of Surprisal on Reading Times

This effect generalizes when we look at reading times in a large text corpus: More
surprising words take longer to read.
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this slowdown occurs. (a) First-pass gaze durations. (b) Self-paced reading times. Lower panels show the proportion of data available at each level of
probability.



General Effect of Surprisal on Speech

The effect also generalizes to speech: More surprising syllables have a longer duration.
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Surprisal Effects

https://app.wooclap.com/FUZTIE
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e Communicative efficiency can be formalized using Information Theory.
e The forms of languages appear optimized for efficient communication.

e Efficiency also has observable effects on language processing.
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