# Informatics 1 Cognitive Science

Lecture 9: Bayesian Modeling

Frank Keller

2 February 2024

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

Slide credits: Frank Mollica, Chris Lucas, Mirella Lapata

**Priors and Posteriors** 

Bayes Rule

Bayesian Update

**Rational Analysis** 

## Recap



- We observe input and infer the underlying cognitive technology.
- For example: we listen to speech and infer the underlying words.
- More generally: We experiment, we observe data and we update our beliefs.
- Last time, we looked at the use of transitional probabilities P(y|x).
- Today, we will generalize this: Bayesian belief update.

# **Priors and Posteriors**

# What's in the box?



### Time for a short quiz on Wooclap!



## https://app.wooclap.com/YFCYTE

| Book | Candy | Carrot | Hope | Nothing<br>Hypothesis | Scarf | Shoes | Shroedinger's cat | maller box |
|------|-------|--------|------|-----------------------|-------|-------|-------------------|------------|

## **Prior Beliefs**



Let's watch a short video about the box:

https://groups.inf.ed.ac.uk/teaching/cogsci/course/tutorials/Evidence.mp4

- The video provides additional evidence (data, observations).
- We use this to infer what's in the box.
- Specifically, for each hypothesis, if this hypothesis is true, how likely would it generate that noise?

## **Posterior Beliefs**





**Bayes Rule** 

#### Bayes Rule

is the calculus of belief updating:

$$P(\mathcal{H}|D) = rac{P(D|\mathcal{H})P(\mathcal{H})}{P(D)}$$

- $P(\mathcal{H}|D)$  Posterior beliefs: what you believe about hypotheses after seeing data
- $P(D|\mathcal{H})$  Likelihood: how likely would a given hypothesis result in this data
- $P(\mathcal{H})$  Prior beliefs: what you believe about hypotheses before seeing data
- P(D) Evidence: how likely is this data in general

#### Problem

My buddy and I are on vacation in a country where we don't know the local language. The city we are in this week has these awesome hot springs with monkeys and we want to go. Unfortunately, the hot springs do not allow clothing and my friend is really shy about bathing with women. Fortunately, the hot springs has one day a week for men and one day a week for women. Problem: This place is lo-tech and there is no signage to find out which day is for men only.

## Solution?

My friend has a good idea! Every day, we will pop by the springs and see who is leaving. We can use that information to solve our problem.

#### Hypothesis

 $h_1$ Today is a women only day. $h_2$ Today has no restriction. $h_3$ Today is a men only day.

What do we know know before we walk out the door?

### Hypothesis Prior

| $h_1$ | Today | is | а | women | only | day. | $\frac{1}{7}$ |
|-------|-------|----|---|-------|------|------|---------------|
| _     |       |    |   |       |      |      |               |

| $h_2$ | Today | has | no | restriction. | 57 |
|-------|-------|-----|----|--------------|----|
|       | -     |     |    |              |    |

| $h_3$ | Today | is | а | men | only | day. | $\frac{1}{7}$ |
|-------|-------|----|---|-----|------|------|---------------|
|       | -     |    |   |     | -    | -    |               |

How likely would it be to see a man leave under each hypothesis?

|                | Hypothesis                 | Prior         | Like <sub>M</sub> |
|----------------|----------------------------|---------------|-------------------|
| $h_1$          | Today is a women only day. | $\frac{1}{7}$ | 0                 |
| h <sub>2</sub> | Today has no restriction.  | $\frac{5}{7}$ | $\frac{1}{2}$     |
| $h_3$          | Today is a men only day.   | $\frac{1}{7}$ | 1                 |

How likely would it be to see a woman leave under each hypothesis?

|                | Hypothesis                 | Prior         | Like <sub>M</sub> | Like <sub>N</sub> |
|----------------|----------------------------|---------------|-------------------|-------------------|
| $h_1$          | Today is a women only day. | $\frac{1}{7}$ | 0                 | 1                 |
| h <sub>2</sub> | Today has no restriction.  | $\frac{5}{7}$ | $\frac{1}{2}$     | $\frac{1}{2}$     |
| h <sub>3</sub> | Today is a men only day.   | $\frac{1}{7}$ | 1                 | 0                 |

#### Time for a short quiz on Wooclap!



## https://app.wooclap.com/YFCYTE

# **Bayesian Update**

So we arrive at the hot springs on day one. We wait five minutes and see a man exit. My friend wants to be 90% sure it's men only before going in. Should we leave, go in or wait longer?

$$P(\mathcal{H}|D) = rac{P(D|\mathcal{H})P(\mathcal{H})}{P(D)}$$

|                | Hypothesis                 | Prior         | Like <sub>M</sub> | Post. Score                                 |
|----------------|----------------------------|---------------|-------------------|---------------------------------------------|
| $h_1$          | Today is a women only day. | $\frac{1}{7}$ | 0                 | $(0)(\frac{1}{7}) = 0$                      |
| $h_2$          | Today has no restriction.  | <u>5</u><br>7 | $\frac{1}{2}$     | $(\frac{1}{2})(\frac{5}{7}) = \frac{5}{14}$ |
| h <sub>3</sub> | Today is a men only day.   | $\frac{1}{7}$ | 1                 | $(1)(\frac{1}{7}) = \frac{1}{7}$            |

$$\mathsf{P}(\mathcal{H}|D) = rac{\mathsf{P}(D|\mathcal{H})\mathsf{P}(\mathcal{H})}{\mathsf{P}(D)}$$

|                | Hypothesis                 | Prior         | $Like_M$      | Post. Score                                 |
|----------------|----------------------------|---------------|---------------|---------------------------------------------|
| $h_1$          | Today is a women only day. | $\frac{1}{7}$ | 0             | $(0)(\frac{1}{7}) = 0$                      |
| h <sub>2</sub> | Today has no restriction.  | <u>5</u><br>7 | $\frac{1}{2}$ | $(\frac{1}{2})(\frac{5}{7}) = \frac{5}{14}$ |
| h <sub>3</sub> | Today is a men only day.   | $\frac{1}{7}$ | 1             | $(1)(\frac{1}{7}) = \frac{1}{7}$            |
|                |                            |               |               |                                             |

Evidence

$$P(D) = \sum_{h} P(D|h)P(h)$$

Evidence

$$P(\mathcal{H}|D) = rac{P(D|\mathcal{H})P(\mathcal{H})}{P(D)}$$

|                | Hypothesis                   | Prior            | $Like_M$                     | Post. Score                                 |
|----------------|------------------------------|------------------|------------------------------|---------------------------------------------|
| $h_1$          | Today is a women only day.   | $\frac{1}{7}$    | 0                            | $(0)(\frac{1}{7}) = 0$                      |
| $h_2$          | Today has no restriction.    | $\frac{5}{7}$    | $\frac{1}{2}$                | $(\frac{1}{2})(\frac{5}{7}) = \frac{5}{14}$ |
| h <sub>3</sub> | Today is a men only day.     | $\frac{1}{7}$    | 1                            | $(1)(\frac{1}{7}) = \frac{1}{7}$            |
|                | $P(D) = \sum_{h} P(D h)P(h)$ | $=\frac{5}{14}+$ | $\frac{1}{7} = \frac{7}{14}$ | $=\frac{1}{2}$                              |

19

$$P(\mathcal{H}|D) = rac{P(D|\mathcal{H})P(\mathcal{H})}{P(D)}$$

|          |                | Hypothesis        | Prior         | Like <sub>M</sub> | Post. Score                                 | Posterior     |
|----------|----------------|-------------------|---------------|-------------------|---------------------------------------------|---------------|
|          | $h_1$          | Women only day.   | $\frac{1}{7}$ | 0                 | 0                                           | 0             |
|          | $h_2$          | No restriction.   | $\frac{5}{7}$ | $\frac{1}{2}$     | $\frac{5}{14}$                              | $\frac{5}{7}$ |
|          | h <sub>3</sub> | Men only day.     | $\frac{1}{7}$ | 1                 | $\frac{1}{7}$                               | $\frac{2}{7}$ |
| Evidence |                | $P(D) = \sum_{h}$ | P(D h         | )P(h) =           | $\frac{5}{14} + \frac{1}{7} = \frac{7}{14}$ |               |

We wait another five minutes and see five more men exit. My friend wants to be 90% sure it's men only before going in. Should we leave, go in or wait longer?

$$P(\mathcal{H}|D) = rac{P(D|\mathcal{H})P(\mathcal{H})}{P(D)}$$

|                | Hypothesis                 | Prior         | $Like_M$      | Post. Score                                    |
|----------------|----------------------------|---------------|---------------|------------------------------------------------|
| $h_1$          | Today is a women only day. | $\frac{1}{7}$ | 0             | $(0)^6(\frac{1}{7}) = 0$                       |
| h <sub>2</sub> | Today has no restriction.  | <u>5</u><br>7 | $\frac{1}{2}$ | $(\frac{1}{2})^6(\frac{5}{7}) = \frac{5}{448}$ |
| h <sub>3</sub> | Today is a men only day.   | $\frac{1}{7}$ | 1             | $(1)^6(rac{1}{7}) = rac{1}{7}$               |

$$\mathsf{P}(\mathcal{H}|D) = rac{\mathsf{P}(D|\mathcal{H})\mathsf{P}(\mathcal{H})}{\mathsf{P}(D)}$$

|                | Hypothesis                 | Prior         | Like <sub>M</sub> | Post. Score                                    |
|----------------|----------------------------|---------------|-------------------|------------------------------------------------|
| $h_1$          | Today is a women only day. | $\frac{1}{7}$ | 0                 | $(0)^{6}(\frac{1}{7}) = 0$                     |
| $h_2$          | Today has no restriction.  | <u>5</u><br>7 | $\frac{1}{2}$     | $(\frac{1}{2})^6(\frac{5}{7}) = \frac{5}{448}$ |
| h <sub>3</sub> | Today is a men only day.   | $\frac{1}{7}$ | 1                 | $(1)^6(\frac{1}{7}) = \frac{1}{7}$             |
|                | -                          |               | <b>CO</b>         |                                                |

$$P(D) = \frac{5}{448} + \frac{1}{7} = \frac{69}{448}$$

$$P(\mathcal{H}|D) = rac{P(D|\mathcal{H})P(\mathcal{H})}{P(D)}$$

| Hypothesis      | Prior                                                             | Like <sub>M</sub>                                                                                      | Post. Score                                                                                                                   | Posterior                                                                                                                                                                     |
|-----------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Women only day. | $\frac{1}{7}$                                                     | 0                                                                                                      | 0                                                                                                                             | 0                                                                                                                                                                             |
| No restriction. | <u>5</u><br>7                                                     | $\frac{1}{2}$                                                                                          | <u>5</u><br>448                                                                                                               | $\frac{5}{69} = 0.072$                                                                                                                                                        |
| Men only day.   | $\frac{1}{7}$                                                     | 1                                                                                                      | $\frac{64}{448}$                                                                                                              | $\frac{64}{69} = 0.928$                                                                                                                                                       |
|                 | Hypothesis<br>Women only day.<br>No restriction.<br>Men only day. | HypothesisPriorWomen only day. $\frac{1}{7}$ No restriction. $\frac{5}{7}$ Men only day. $\frac{1}{7}$ | HypothesisPriorLike_MWomen only day. $\frac{1}{7}$ 0No restriction. $\frac{5}{7}$ $\frac{1}{2}$ Men only day. $\frac{1}{7}$ 1 | HypothesisPriorLike $M$ Post. ScoreWomen only day. $\frac{1}{7}$ 00No restriction. $\frac{5}{7}$ $\frac{1}{2}$ $\frac{5}{448}$ Men only day. $\frac{1}{7}$ 1 $\frac{64}{448}$ |

$$P(D) = \frac{5}{448} + \frac{1}{7} = \frac{69}{448}$$

# **Rational Analysis**

- Bayes Rule requires us to formalize the important components of a learning mechanism.
- If a specification perfectly captures the learning problem, Bayes Rule provides us a normative model for what the optimal behavior should look like.
- If we write down the problem incorrectly, human behavior may deviate from the model's predictions.
- We can then improve our specification and try again.
- This cyclic modeling approach using specifications using Bayes rule is called Rational Analysis.

## Summary

- Bayes Rule is a way of calculating the probability of a hypothesis, given some evidence (data).
- It includes four terms: posterior  $P(\mathcal{H}|D)$ ; likelihood  $P(D|\mathcal{H})$ ; prior  $P(\mathcal{H})$ ; evidence P(D).
- The prior encodes how probable a hypothesis is without any evidence, the likelihood encodes how probable it is to observe this evidence if the hypothesis is true.
- The posterior is the result of combining the two.
- Bayesian update: we can re-compute the posterior as we obtain more evidence for or against the hypothesis.
- Bayes rule provides a way of analyzing learning mechanism.
- Can be used for broad range of cognitive processes: rational analysis.