
Informatics 1 Cognitive Science

Lecture 6: Multilayer Perceptrons and Backpropagation

Frank Keller

26 January 2024

School of Informatics

University of Edinburgh

keller@inf.ed.ac.uk

Slide credits: Frank Mollica, Chris Lucas, Mirella Lapata

1

keller@inf.ed.ac.uk


Overview

Multilayer Perceptrons

Gradient Descent

The Update Rule

Backpropagation

2



Recap: Perceptrons

• Neural networks (aka deep learning) is a computer modeling approach inspired by

networks of biological neurons.

• A neural net consits of units and connections.

• The perceptron is the simplest neural network model; it is a linear classifier.

• A learning algorithm for perceptrons exists.

• Key limitation: only works for linearly separable data.

3



Recap: Perceptrons

−1

w0

x1 w1

xnxn

wn

y
x =

∑n
i=0 wixi

0
0

1

4



Multilayer Perceptrons



Multilayer Perceptrons (MLPs)

Input layer

Hidden layer

Output layer

• MLPs are feed-forward neural networks, organized in layers.

• One input layer, one or more hidden layers, one output layer.

• Each node in a layer connected to all other nodes in next layer.

• Each connection has a weight (can be zero). 5



Activation Functions

x1

w1

x2 w2

xn

wn

y
Σ

0
h

1

Step function

0
xh

y

1

Outputs 0 or 1.

Sigmoid function

0
xh

y

1

Outputs a real value between 0 and 1.
6



Learning with MLPs

Input layer

Hidden layer

Output layer

• As with perceptrons, finding the right weights is very hard!

• Solution: learning alorithm.

• Learning: adjusting the weights based on training examples.

7



Supervised Learning

General Idea

1. Send the MLP an input pattern x from the training set.

2. Get the output y from the MLP.

3. Compare y with the “right answer”, or target t, to get the error quantity.

4. Use the error quantity to modify the weights, so next time y will be closer to t.

5. Repeat with another x from the training set.

When updating weights after seeing x , the network doesn’t just change the way it

deals with x , but other inputs too . . .

Even inputs it has not seen yet!

Generalization is the ability to deal accurately with unseen inputs.

8



Learning and Error Minimization

Recall: Perceptron Learning Rule

Minimize the difference between the output o and the target t:

wi ← wi + η(t − o)xi

Error Function: Mean Squared Error (MSE)

An error function represents such a difference over a set of inputs:

E (~w) =
1

2N

N∑

p=1

(tp − op)2

• N is the number of patterns

• tp is the target output for pattern p

• op is the output obtained for pattern p

• Actually MSE/2; the 2 makes little difference, but makes life easier later on! 9



Learning and Error Minimization

Time for a short quiz on Wooclap!

https://app.wooclap.com/TDNYYK

10

https://app.wooclap.com/TDNYYK


Gradient Descent



Gradient Descent

• We would like a learning rule

that tells us how to update

weights, like this:

w ′ij = wij + ∆wij

• But what should ∆wij be?

• Idea: Pick ∆wij so that it

minimizes the error function E .

• Gradient descent is a technique

for minimizing a function.

11



Gradient and Derivatives: The Idea

• The derivative is a measure of the rate of change of a function, as its input

changes.

• For function y = f (x), the derivative dy
dx indicates how much y changes in

response to changes in x .

• If x and y are real numbers, and if the graph of y is plotted against x , the

derivative measures the slope or gradient of the line at each point, i.e., it

describes the steepness or incline.

12



Gradient and Derivatives: The Idea

• dy
dx > 0 implies that y increases as x increases. If we want to find the minimum y ,

we should reduce x .

• dy
dx < 0 implies that y decreases as x increases. If we want to find the minimum y ,

we should increase x .

• dy
dx = 0 implies that we are at a minimum or maximum or a plateau.

To get closer to the minimum: xnew = xold − η
dy

dx

13



Gradient and Derivatives: The Idea

• dy
dx > 0 implies that y increases as x increases. If we want to find the minimum y ,

we should reduce x .

• dy
dx < 0 implies that y decreases as x increases. If we want to find the minimum y ,

we should increase x .

• dy
dx = 0 implies that we are at a minimum or maximum or a plateau.

To get closer to the minimum: xnew = xold − η
dy

dx

13



Gradient and Derivatives: The Idea

• dy
dx > 0 implies that y increases as x increases. If we want to find the minimum y ,

we should reduce x .

• dy
dx < 0 implies that y decreases as x increases. If we want to find the minimum y ,

we should increase x .

• dy
dx = 0 implies that we are at a minimum or maximum or a plateau.

To get closer to the minimum: xnew = xold − η
dy

dx

13



Gradient and Derivatives: The Idea

• dy
dx > 0 implies that y increases as x increases. If we want to find the minimum y ,

we should reduce x .

• dy
dx < 0 implies that y decreases as x increases. If we want to find the minimum y ,

we should increase x .

• dy
dx = 0 implies that we are at a minimum or maximum or a plateau.

To get closer to the minimum: xnew = xold − η
dy

dx 13



Gradient and Derivatives: The Idea

• So, we know how to use derivatives to adjust one input value.

• But we have several weights to adjust!

• We need to use partial derivatives.

• A partial derivative of a function of several variables is its derivative with respect

to one of those variables, with the others held constant.

Example

If y = f (x1, x2), then we can have ∂y
∂x1

and ∂y
∂x2

.

In our learning rule case, if we can work out the partial derivatives, we can use this rule

to update the weights:

w ′ij = wij + ∆wij

where ∆wij = −η ∂E
∂wij

.

14



Summary So Far

• We learned what a multilayer perceptron is.

• We know a learning rule for updating weights in order to minimise the error:

w ′ij = wij + ∆wij

where ∆wij = −η ∂E
∂wij

• ∆wij tells us in which direction and how much we should change each weight to

roll down the slope (descend the gradient) of the error function E .

• So, how do we calculate ∂E
∂wij

?

15



Summary So Far

• We learned what a multilayer perceptron is.

• We know a learning rule for updating weights in order to minimise the error:

w ′ij = wij + ∆wij

where ∆wij = −η ∂E
∂wij

• ∆wij tells us in which direction and how much we should change each weight to

roll down the slope (descend the gradient) of the error function E .

• So, how do we calculate ∂E
∂wij

?

15



The Update Rule



Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

The mean squared error function E , which we want to minimize:

E (~w) =
1

2N

N∑

p=1

(tp − op)2

16



Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

If we use a sigmoid activation function f , then the output of neuron i for pattern p is:

opi = f (ui ) =
1

1 + e−aui

where a is a pre-defined constant and ui is the result of the input function in neuron i :

ui =
∑

j

wijxij

17



Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

For the pth pattern and the ith neuron, we use gradient descent on the error function:

∆wij = −η ∂Ep

∂wij
= η(tpi − opi )f ′(ui )xij

where f ′(ui ) = df
dui

is the derivative of f with respect to ui .

If f is the sigmoid function, f ′(ui ) = af (ui )(1− f (ui )).

18



Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

We can update weights after processing each pattern, using rule:

∆wij = η (tpi − opi ) f ′(ui ) xij

∆wij = η δpi xij

This is known as the generalized delta rule.

19



Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

We can update weights after processing each pattern, using rule:

∆wij = η (tpi − opi ) f ′(ui ) xij

∆wij = η δpi xij

This is known as the generalized delta rule.

19



Updating Output vs Hidden Neurons

We can update output neurons using the generalized delta rule:

∆wij = η δpi xij

δpi = (tpi − opi )f ′(ui )

This δpi is only good for the output neurons, since it relies on target outputs. But we

don’t have target output for the hidden nodes! What can we use instead?

δpi =
∑

k

wki δk f
′(ui )

This rule propagates error back from output nodes to hidden nodes. If effect, it blames

hidden nodes according to how much influence they had. So, now we have rules for

updating both output and hidden neurons!

20



Updating Output vs Hidden Neurons

Time for a short quiz on Wooclap!

https://app.wooclap.com/TDNYYK

21

https://app.wooclap.com/TDNYYK


Backpropagation



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1. Present the pattern at the input layer.

2. Propagate forward activations.

3. Calculate error for the output neurons.

4. Propagate backward error.

22



Online Backpropagation

1: Initialize all weights to small random values.

2: repeat

3: for each training example do

4: Forward propagate the input features of the example

to determine the MLP’s outputs.

5: Back propagate error to generate ∆wij for all weights wij .

6: Update the weights using ∆wij .

7: end for

8: until stopping criteria reached.

23



Online Backpropagation

Time for a short quiz on Wooclap!

https://app.wooclap.com/TDNYYK

24

https://app.wooclap.com/TDNYYK


Summary

• We learned what a multilayer perceptron is.

• We have some intuition about using gradient descent on an error function.

• We know a learning rule for updating weights in order to minimize the error:

∆wij = −η ∂E
∂wij

• If we use the squared error, we get the generalized delta rule: ∆wij = ηδpi xij .

• We know how to calculate δpi for output and hidden layers.

• We can use this rule to learn an MLP’s weights using the backpropagation

algorithm.

Next lecture: a neural network model of the past tense.

25


	Multilayer Perceptrons
	Gradient Descent
	The Update Rule
	Backpropagation

