
Informatics 1 Cognitive Science – Tutorial 2
Solutions

Frank Keller, Carina Silberer, Frank Mollica

Week 3

The goal of this tutorial is to start building an in-depth understanding of
how perceptrons work and the backpropagation algorithm used for training
multilayer perceptrons. Before working on the exercises, you should make
sure that you have revised the slides for lectures 5 and 6.

1 Perceptrons

In the lecture you learned that the primitive boolean functions and and
or can be represented by a single perceptron each. You also saw that a
single perceptron does not have the representational power to represent the
boolean function xor. A network of perceptrons two levels deep can in fact
represent every boolean function.

Exercise 1 Consider the two-level network illustrated below. It is com-
posed of three perceptrons. The two perceptrons of the first level implement
the and and or functions, respectively.

Determine the weights w11, w12 and threshold θ1(= w10) such that the net-
work implements the xor function. The initial weights are set to zero,
i.e., w11 = w12 = w10 = 0, and the learning rate η is set to 0.1 (Feel free to
choose other initial values for w1. and η).

Notes

� The input function for the perceptron on level j is the weighted sum∑
of its input.

1



� The activation function f for a perceptron is a step function:

f =

{
1 if

∑
> 0

0 otherwise

� The threshold θ is considered as a weight, with input p0 = −1.

� Assume that the weights for the perceptrons of the first level are
given, meaning that these perceptrons already compute AND and
OR correctly and their weights do not change.

Solution 1

Learning Algorithm for xor:
for each training example x

p← (p0, fand(x), for(x))
o← f(

∑n
i=0w1ipi)

t← target of x
for i = 0 : n

∆w1i ← η(t− o)pi
wji ← w1i + ∆w1i

Please see the spreadsheet xor-with-sols.xlsx for the detailed com-
putations.

2 Backpropagation in Multilayer Perceptrons

Exercise 2 Consider the following multilayer perceptron.

• The activation function f for a perceptron is a step function:

f =

{
1 if

∑
> 0

0 otherwise

• The thresholds θ are considered as weights, with p0 = −1 and x0 =
−1 (not shown).

• Assume that the weights for the perceptrons of the first level are
given.

2 Backpropagation in Multilayer Perceptrons

Now consider the following multilayer perceptron.

x1

x2

∑
/g

∑
/g

y
∑
/g

w1
11

w1
12

w1
21

w1
22

w2
11

w2
12

The network should implement the xor function. Perform one epoch of
backpropagation as introduced in the lecture on multilayer perceptrons.
That is, for each training example: compute the activations of the hidden
and output neurons; compute the error of the network; backpropagate the
error to determine ∆wij for all weights wij and updates the weight wij.
What was the error before and after updating the weights?

Notes

• The activation function g for a perceptron is the sigmoid function:

g(x) =
1

1 + e−x

• The thresholds are not shown in the network. The threshold nodes
are, as in exercise 1, set to −1.

• Use the following initial parameter values:
w1

11 = 6;w1
21 = −6; θ1 = 2

w1
12 = 8;w1

22 = −8; θ2 = −1
w2

11 = 6;w2
12 = −6; θ3 = −2

• The learning rate is set to η = 0.7.

2

The network should implement the xor function. Perform one epoch of
backpropagation as introduced in the lecture on multilayer perceptrons.
That is, for each training example:

1. Compute the activations of the hidden and output neurons

2. Compute the error of the network; backpropagate the error to deter-
mine ∆wij for all weights wij

3. Update the weight wij

2



What was is error before and after updating the weights through one round
of training (or epoch)?

We will break this into several steps below. It will be very time consum-
ing to do the computations for backpropatgation by hand. Instead, you
can use the Excel spreadsheet provided with the tutorial, or implement
backpropagation in a programming language of your choice.

1. Write down the equations for the output of each unit.

2. Write down the equation for the error of the network based on its
output using the MSE we discussed in lecture. We don’t use this
directly until we’re reporting the error at the end – in updating the
weights we want the gradient of the error.

3. Write down the derivative of the activation function (you don’t have
to derive this by hand; it’s in the slides).

4. Write down the formulas for the changes in the weights (∆w), and
the δ terms they rely on.

5. Compute the error for the initial weights. As noted above, use the
spreadsheet to do this. Otherwise it’s painful.

6. Compute the values for ∆w for all weights.

7. Compute the new error after updating the weights.

Notes

� The activation function g for this perceptron is the sigmoid function:
g(x) = 1

1+e−x .

� The thresholds are not shown in the network. The threshold nodes
are set to −1, and their weights are denoted with θ.

� Use the following initial parameter values, where each row corre-
sponds to the unit that each weight/bias feeds into:

w1
11 = 6 w1

12 = 8 θ11 = 2

w1
21 = −6 w1

22 = −8 θ12 = −1

w2
11 = 6 w2

12 = −6 θ2 = −2

� The learning rate is set to η = 0.7.

3



Solution 2.1 If the combined inputs for the hidden layer are u
(1)
i for

i = 1, 2, then

u
(1)
i :=

2∑
j=1

(w1
ijxj)− θ1i

and the output from these units is g(u
(1)
j ). For the output layer, with

only one unit, the combined input is

u(2) :=
2∑

j=1

(w2
1jg(u

(1)
j ))− θ2

and the final output is
y = g(u(2)).

Note that the superscripts on w2
ij, θ

2, and u(2) mean “for units in the
second layer” rather than “squared”. Parentheses have been added to the
superscripts on the u terms to make that more obvious.

Solution 2.2 As mentioned previously, we’re dividing the traditional
MSE by two, so our formula is

E(w) =
1

2N

N∑
p=1

(tp − yp)2

where N is the total number of outputs and p denotes the pth pattern.
In this case, the superscript 2 does mean “squared”. Note that if we’re
updating our weights incrementally after each different input, and there’s
only one output, then N = 1 and we don’t have to sum over anything.

Solution 2.3 The derivative of g(u), which we can express as g′(u), is
g(u)(1−g(u)). Remember that this is specific to the specific kind of sigmoid
function we’re using.

Solution 2.4 We want to compute the change ∆wl
ij to each weight (we

add the change to each weight for the next round), where l is the layer
of the weight (or the layer of the unit it feeds into), i is the index of the
unit within that layer, and j is the index of the unit in the preceding layer,
whose output the weight is multiplying. To compute ∆w, we need the
change in the MSE as a function of the current weight we’re considering.
We can factor that change-in-error into two parts: (1) the change in the
error as a function of the activation of the unit that the weight feeds into,
and (2) the change in activation as a function of the change in the weight.
The first is the δ term below, and the second is just the input that the
weight is multiplying. Specifically:

4



∆w2
11 =ηδ3g(u

(1)
1 ) (first hidden node to the output node)

∆w2
12 =ηδ3g(u

(1)
2 ) (second hidden node to the output node)

∆w1
ij =ηδixj (input node j to to hidden node i; there are 4 of these)

∆θ2 =− ηδ3 (bias to output node)

∆θ11 =− ηδ1 (bias to output node 1)

∆θ12 =− ηδ2 (bias to hidden node 2)

In the case of the output node weights, this is the same as the rule for
the a single-layer network (with a sigmoid activation rule). The δ3 is the
decrease in the error as a function of the total activation, or

δ3 = g′(u(2))(t− g(u(2))) = g(u(2))(1− g(u(2)))(t− g(u(2))).

For the weights that are “earlier” in the network, we can re-use the
delta term; an earlier node is contributing to greater error if it increases
the activation of node for which higher activation means higher error.

δ1 =g′(u
(1)
1 )w2

11δ3

δ2 =g′(u
(1)
2 )w2

12δ3

Solution 2.5 We now have expressions for the changes in all of our
weights after presenting the network with inputs and a target output (wl

ij ←
wl

ij+∆wl
ij after each of theN inputs.) See the spreadsheet multilayer-sandbox.xlsx

for the actual computations.

5


