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Reading

Wilson, Robert C., and Collins, Anne GE. (2019). “Ten simple rules
for the computational modeling of behavioral data” (link)

https://elifesciences.org/articles/49547


Computational modelling in cognitive science

Today:

Run through the process of developing and using
computational models in cognitive science
Point out connections to past lectures
Introducing some opportunities for further study. (*)



Steps

0 What is our scientific question or hypothesis?
1 Techinical design

Experiment
Model(s)
Analysis

2 Simulation-based checks and updates
3 Run experiments
4 Conduct analyses
5 Follow-ups and extensions
6 Sharing results



0. What is our scientific question or hypothesis?

Examples:

“Perceptual decision-making is based on a process of sequential
evidence accumulation” (Lecture 1)

“We categorize new things by comparing them to
{exemplars,prototypes} from our experience” (Lecture 1)

“Anxious individuals have difficulty learning the causal statistics
of aversive environments”

Browning et al. 2015

https://www.nature.com/articles/nn.3961


1. Design experiment/model/analysis

Your experiments, models, and analyses are interconnected —
design decisions in one have implications for the others.

E.g.,

Many parameters of interest ⇒ many data points.
Individual differences analysis ⇒ many data points per
participant.
Intractable likelihoods ⇒ no Bayes factors (probably).



1A. Design experiment(s)*

Good experiments are hard to design — part of why BOED is a
powerful tool.
We have discussed ways to evaluate an experimental design
(e.g., Lecture 17).

But not so much the art itself.
Sometimes a simple elaboration on an earlier design.
Sometimes inspired by watching/reflecting on everyday behavior.

Have both the model and the analyses in mind; avoid
temptation to design complex “fishing expedition” studies.

https://groups.inf.ed.ac.uk/teaching/ccs/slides/ccs_l17_BOED.pdf


1B. Design computational model(s)

Desiderata:

Simplicity is good (Lecture 7) but don’t overdo it
“nuisance parameters” like left/right bias can help detect
interesting patterns

Makes precise predictions (Lecture 2)
Interpretable
Tractable: Make sure you can fit/compare your models on the
computers you have

https://groups.inf.ed.ac.uk/teaching/ccs/slides/ccs_l07_comparison.pdf
https://groups.inf.ed.ac.uk/teaching/ccs/slides/ccs_l02_modelbuilding.pdf


1B. Design computational model(s)

There are many kinds of models.

Recall Marr’s taxonomy (Lecture 1)
1 Computational-level

Often frames cognition as Bayesian inference/decision theory
but not necessarily probabilistic in the F&L sense
“Rational”, “Ideal-observer” models

https://groups.inf.ed.ac.uk/teaching/ccs/slides/ccs_l01_intro.pdf


1B. Design computational model(s)

2 Process-level

Often constrained/inspired by computational-level models.
e.g., approximations of computational-level models
e.g., Rescorla-Wagner
e.g., Random-walk
e.g., Nosofsky’s categorization model
. . . most models



1B. Design computational model(s)

3 Implementation-level

Often constrained/inspired by process-level models.
“Pure” implementation-level models are rare in higher-level
cognition



1B. Design computational model(s)

New models + baseline/alternative models.

Alternatives are most often
1 “Lesioned” versions of the main model (often nested within

main model; Lecture 7)
2 Competing proposals from the scientific literature.
3 A random-guessing baseline.

These should capture salient competing hypotheses.

https://groups.inf.ed.ac.uk/teaching/ccs/slides/ccs_l07_comparison.pdf


1C. Plan data analysis

Decide how models will be compared and evaluated before
collecting data.



1C. Plan model comparison/parameter estimation

Parameter estimation (Lectures 3-5)
Model selection (Lectures 7-8)
Individual differences analyses (Lecture 6)

Always connect analyses to psychological questions/claims.



1C. Plan model-free analyses*

Many hypotheses/theories entail simple and distinctive predictions,
e.g.,

“x > y”
“corr(x,y) > 0”

You should plan to run and report direct tests of these predictions.

Can help convince skeptical and less technically-sophisticated
audiences
Computationally inexpensive
Models can fit badly for many reasons; model-free analyses can
suffice to make a point



2. Simulate data

Almost all cognitive models are simulator models; we can run them
through a hypothetical experiment and what the data will look like.

1 Sanity-check our models. Do the data look implausible?
2 Run our planned analyses, using sample sizes from our planned

experiment(s).

(Lecture 8)

https://groups.inf.ed.ac.uk/teaching/ccs/slides/ccs_l08_comparison2.pdf


2. Simulate data

Fake-data simulation + analysis can answer many questions:

Can we come to meaningful conclusions, regardless of which
model is actually true*?
How often do we pick the true model or make a correct
inference about θ? (power)
How often do we come to a spurious conclusion?
Addresses identifiability in theory and practice.

:) → Collect data1.

:( → Redesign our models or experiments.

1but consider pre-registering first!



3. Run experiment*

Implementing and running experiments is an important topic in its
own right.

Often learned “on the job”, e.g., honours or MSc project.
Tools are numerous and change often.
Not a focus of our course.



4A. Execute analysis plan

This should be straightforward after Steps 1C and 2!

Do not be disheartened by:

High individual variability, e.g., in what model explains a
participant’s behavior.
No model “winning” decisively.
Unexpected patterns in data.

Aspire to have something useful and true to say, not to explain
everything that might be happening.



4B. Validate winning model(s)*

Not discussed in the course, but increasingly recognized as
important.

The best model of those considered may not be a good model.

One way to address this concern: Posterior predictive checks:
Sample from posterior of fitted model; compare to data.



5. Follow-ups and (post-hoc) model extensions*

Sometimes it is clear where a model went wrong, and a simple
change can fix it.

Running additional analyses using modified models is fine — but be
honest about it and report both sets of analyses.



6. Disseminating/sharing your results*

Report everything that was in your plan (somewhere).

Additional analyses are fine, but should be noted as such.

Results of fake-data simulation: Confusion matrices and
parameter recovery plots.
Overall model fits, e.g., BIC/crossVal scores, Bayes factors,
Fits/posterior estimates for parameters.
Number of individuals best fit by each model.
Model-free inferential stats.



Q&A


