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Active learning

Previously, we discussed models of active learning based on choosing
actions that maximize the information we gain.

If these models work, can they help maximize the information we
gain as scientists?

Running an experiment is an action that can be more or less
informative, depending on the experimental design.
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Designing Experiments (1)

What kind of information should scientific experiments provide?

• They should allow us to distinguish between competing theories
or models.

• If we have psychologically meaningful parameters θ, our data
should tell us something about θ.
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Designing Experiments (2)

Traditionally, people design experiments by hand, relying on prior
experience and intuition. This may work, but:

• It can be time-consuming.

• It can lead to uninformative or even misleading data.

• As theories of human behaviour become richer and more
complex, these problems are exacerbated.
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Designing Experiments (3)

How can we automate experimental design?

• Find designs d that optimize the information we get from our
results y for our variable of interest v , e.g., H(v)− H(v |y , d).

• We can take a Bayesian approach, in which we have priors over
models and v and maximize our expected information gain.

• In other words: Bayesian optimal experimental design (BOED).
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Designing Experiments (4)

BOED is straightforward conceptually, but difficult in practice.
• Estimating expected information gain (or mutual information)

is hard in general.

• Exact Bayesian inference is usually intractable.
• For realistic cognitive models, even the likelihood p(y | θ,m)

may even be intractable!
• E.g.,simulator models including our first random-walk model.

• Previous work on BOED was very limited in the class of models
that could be considered.
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Today: BOED for Simulator Models of Cognition.

This lecture will introduce:

1. New methods for making BOED work with simulator models,
leveraging recent machine learning advances.

2. A proof of concept with new empirical results from a
multi-armed bandit task.

Based on work by Simon Valentin, Steven Kleinegesse, and others1.

1Valentin, S., Kleinegesse, S., Bramley, N. R., Gutmann, M. U. and Lucas, C. G. Bayesian Optimal Experimental

Design for Simulator Models of Cognition. In NeurIPS 2021 Workshop" AI for Science: Mind the Gaps", 2021.

https://arxiv.org/abs/2110.15632
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Case Study: Multi-Armed Bandit Tasks

• Here: Multi-armed (Bernoulli) bandits with k arms and fixed
reward probabilities.

• Experimental design problem: How do we set the reward
probabilities associated with each the k arms, possibly across
multiple blocks?

Image credit: http://research.microsoft.com/en-us/projects/bandits/
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Bandit Task
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Formalising the Experimental Design
Problem
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Notation

Notation

• Observed data: y; actions a and rewards r, so y = [a, r].

• Model parameters: θ; e.g., probability of selecting previous
arm.

• Experimental design: d; reward probabilities, e.g.,
[0.5, 0.2, 0.6] .
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Recap: Bayesian Inference

Update beliefs about variable of interest v upon observing data y:

p(v | y) = p(y | v)p(v)
p(y) ,

where
p(y) =

∫
p(y | v)p(v) dv.

• Usually, this integral is intractable.

• However, you have seen (and used!) methods for doing
approximate Bayesian inference, such as importance sampling.
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Intractable Likelihoods

With more expressive models, even the likelihood function p(y | v)
may be intractable.

For example, due to hidden variables h.

p(y | v) =
∫

h
p(y | h, v)p(h | v) dh.
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Intractable Likelihoods

• If |h| is large, we cannot apply standard methods here and need
to resort to likelihood-free inference methods.

• We need to be able to simulate data from the model given
prior samples and an experimental design y ∼ p(y | v,d).

• These models are very common in cognitive science and can
capture rich psychological processes! Example: Random walk
model (Tutorial 1).
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Bayesian Optimal Experimental Design

• Construct a utility function U(d) that describes the worth of an
experimental design d.

• Task: Find d∗ = arg maxd U(d).

• Principled utility function: mutual information (MI), which is
equivalent to the expected information gain.

• For v , a variable of interest that we wish to estimate, we have

U(d) = MI(v ; y|d) := Ep(y|v ,d)p(v)

[
log p(v |y,d)

p(v)

]
. (1)

But computing MI exactly is hard, especially with intractable
models.
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Our Method
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BOED Method

• Maximize the MI with respect to the designs d using machine
learning.

• MINEBED (Kleinegesse & Gutmann, 2020) idea: Train a
neural network on simulated data y at design d with samples
from the prior p(v) to tighten a lower bound on the MI.

• We use a bespoke network architecture for behavioral
experiments, based on the idea of learning approximate
sufficient statistics (Chen et al., 2020).

If you’re keen, you can read more about our method here:
https://arxiv.org/abs/2110.15632.
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BOED Framework

Figure 1: High-level schematic for BOED method.
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Towards More Realistic Models of Human
Behaviour in Bandit Tasks
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Towards More Realistic Models of Human Behaviour in Bandit
Tasks

Generalise, combine and modify existing models to capture more
realistic behaviours.
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Win-Stay Lose-Thompson-Sample (WSLTS)

• Recap: WSLS captures some people’s strategy reasonable well.

• But aren’t people smarter than switching to another arm
selected uniformly at random?

• For example: Why switch to another arm that has failed to
provide any rewards in the past?

• WSLTS: WSLS with Thompson Sampling from a reshaped
posterior instead of shifting to another arm uniformly at
random.
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Autoregressive ε-Greedy (AEG)

• ... Or are people (noisy) greedy, but just have a tendency to
“stick” to the previously selected arm (not matter whether it
produced a reward or not)?

• Or are some people “anti-sticky”?

• AEG: ε-Greedy where the probability of selecting the previous
arm is controlled by a separate parameter.
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Generalized Latent State (GLS)

• Do people have an internal latent exploration-exploitation state
that decides between which option to pick whenever the agent
encounters the trade-off?

• GLS: Unifies and extends latent-state and latent-switching
models (Lee et al., 2011) to allow for more realistic behavior.
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Experiments
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Simulation Study Setup

• 3 armed bandits, 30 trials per block.

• Model discrimination (MD): 2 blocks, v ← m.

• Parameter estimation (PE): 3 blocks, v ← θm.

• Baseline design, sample rewards from Beta(2, 2) (Steyvers et
al., 2009).

25 / 32



Simulation Study Results
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Figure 2: Model recovery
confusion matrices.

θ0
0

1

2

3

4

5

P
os

te
ri

or
D

en
si

ty

θ1
0

0.8

1.6

2.4

θ2
0

0.5

1.0

1.5
Prior

Baseline

Optimal

Figure 3: WSLTS model parameter recovery,
marginal posterior distributions for three
participants.
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Real-World Experiments

We ran these two-stage experiments with 317 participants. What
did we learn?

• Our designs allow us to reveal participants’ strategies at an
individual level.

• optimal reward distributions for our tasks included extreme
values, e.g, 1 and 0

• initially counter-intuitive.
• very different from most previous studies, e.g., beta(2,2).

• Like Steyvers et al., we see substantial individual variability.

• Basic WSLS does not give the best account of most
participants’ strategies.
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Real-World Experiments: A taste

θ0 : probability of staying after winning
θ1 : probability of switching after a loss
θ2 : “temperature”

θ2 →∞⇒WSLS; θ2 → 0⇒ greedy; θ2 → 1⇒ TS
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Conclusions
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Summary

• We present a method for finding optimal experimental designs
for simulator models of cognition.

• Our method can optimize experimental designs with realistic
numbers of trails and dimensions of the design variable.

• Our evaluation shows that the optimal designs we find
outperform designs commonly used in the literature, both with
simulated and real-world data.

• Empirical data support complexity of proposed models of
human behaviour in bandit tasks.

• Note: There is a lot of scope for future work in this area of
research!
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Key things to remember

• Bayesian Optimal Experimental Design (BOED) treats the
design of experiments as an optimization problem, finding
settings that maximise the expected information gain.

• Simulator models can encode realistic and complex
psychological processes, and allow for sampling observed data
from the model, even if the likelihood is intractable.

• BOED is challenging, but recent machine-learning-based
advances make it feasible to optimize experiments used in
cognitive science.
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