Computational Cognitive Science

Lecture 16: Compositionality

Guest Lecturer: Frank Mollica

Logical Hypotheses

Disjunctive Normal Form
RED

Conjunctive Normal Form
RED

Logical Hypotheses

Disjunctive Normal Form

(RED \wedge SMALL) v (GREEN \wedge LARGE)

Conjunctive Normal Form
(RED v LARGE) $\wedge(G R E E N \vee S M A L L)$
(Sheperd et al., 2008)

Logical Hypotheses

Disjunctive Normal Form

(GREEN \wedge TRIANGLE) v (GREEN \wedge LARGE) v (RED ^ SQUARE ^ SMALL)

Conjunctive Normal Form
$(G R E E N \vee S Q U A R E) \wedge(G R E E N \vee S M A L L) \wedge$
(RED v TRIANGLE v LARGE)

Compositionality

START
$\stackrel{1}{\text { DISJ }}$
CONJ
RED

Compositionality

Compositionality

START \rightarrow DISJ DISJ \rightarrow CONJ
 DISJ \rightarrow CONJ \vee DISJ

Compositionality

- Productivity:
- The language generates all licit hypotheses even those unseen
- Systematicity:
- The function/meaning of a complex hypothesis is determined by its structure and primitive components

Rational Rules

- Hypothesis Space:
- All functions generated by the grammar
- Prior:
- Augment the grammar with probabilities
- Implicitly favors simple expressions

$$
\begin{array}{rlrl}
\text { START } & \\
\text { DISJJ } \\
& \xrightarrow{(1 / 2)} \text { DISJ } & \text { CONJ } & \mathrm{P}(\mathrm{~h})
\end{array}=(1)(1 / 2)(1 / 2)(1 / 2)
$$

1. 1 object, 3 substitutive binary features
2. 3 objects, 3 substitutive binary features
3. 3 objects, 3 additive binary features
4. 3 objects, 1 additive binary feature
5. 1 object, 2 substitutive ternary features
6. 3 objects, 1 undirected binary relation
7. 6 objects, 1 directed binary relation
8. Multiple objects, multiple features and relations
9. 4 objects, multiple features and relations

σ^{π}	σ^{π}
9	9
7	σ^{π}
σ^{π}	
9	9

0^{π}	σ^{π}
7	9
7	σ^{π}
σ^{π}	
7	9

Construct

Our Approach

- Formalize word learning as logical program induction.

Ideal Learner Model

- Specify a Hypothesis Space of concepts
- Specify a Prior over hypotheses
- Specify a Likelihood function
- Specify the environment

Ideal Learner Model

- Specify a Hypothesis Space of concepts
- Specify a Prior over hypotheses
- Specify a Likelihood function
- Specify the environment
- In a Bayesian learning model, learning corresponds to the movement of probability mass over a hypothesis space.

Hypothesis Space

Tree Set
Moving Operations
\section*{Gender Age}
\section*{Inputs}
Child
Parent
Spouse
Union Intersection Difference Complement
Female Male SameGender
SameGeneration
All
Speaker (X) Individual

Hypothesis Space

Tree
 Moving Operations

Gender Age

Union
Intersection
Difference
Complement

Female	SameGeneration	All
Male	ParentGeneration	Speaker (X)
SameGender	GparentGeneration	Individual

```
    SET \xrightarrow{}{1}}\mathrm{ union(SET,SET)
SET }\xrightarrow{}{1}\mathrm{ intersection(SET,SET)
SET }\xrightarrow{}{1}\mathrm{ difference(SET,SET)
SET }\xrightarrow{}{1}\mathrm{ complement(SET)
```

```
SET }\xrightarrow{}{1}\mathrm{ parent(SET)
    SET }\xrightarrow{}{1}\mathrm{ child(SET)
    SET }\xrightarrow{}{1}\mathrm{ lateral(SET)
    SET }\xrightarrow{}{1}\mathrm{ coreside(SET)
```

SET $\xrightarrow{1}$ generation0(SET)
SET $\xrightarrow{1}$ generation1(SET)
$\mathrm{SET} \xrightarrow{1}$ generation2(SET)
SET $\xrightarrow{\frac{1}{37}}$ concreteReferent
$\mathrm{SET} \xrightarrow{1}$ male(SET)
SET $\xrightarrow{1}$ female(SET)
$\mathrm{SET} \xrightarrow{1}$ sameGender (SET)
$\mathrm{SET} \xrightarrow{1}$ all $\mathrm{SET} \xrightarrow{10} \mathrm{X}$

All
Tito
difference(generation0(X), si
male(child(parent(par
female(child(parent(pa intersection(lateral(child(parent(parent(X)))), male(parent(X fference(male(generationO(X)), child(male(c male(child(parent(female(difference(generationO(X), c male(difference(generation1 male(child(parent(female(difference(gener female(parent() female(parent(pare female(parent(male(parє difference(female(generation1(X)), c female(difference(generation fference(male(generation0(X)), child(female rence(male(generation0(Tito)), child(female(male(difference(child(parent(male(pa Mary

Where does data come from?

- Context:

- Data Point:
- Context
- Speaker \bigcirc
- Word uncle
- Referent \mathbf{O}

How do we fit to the data?

Xu \& Tenenbaum, 2007)

Data
 Distribution:

$P(d \mid h)=\alpha \underset{\begin{array}{c}\text { Sampling } \\ \text { from the } \\ \text { hypothesized } \\ \text { concept. }\end{array}}{\substack{\delta_{d \in h} \\|h| \\ \begin{array}{c}\text { Sampling } \\ \text { from everything } \\ \text { in the world. }\end{array}} \frac{1}{|O|}}$

How do we fit to the data?

- Size Principle Likelihood (e.g, Tenenbuam \& Giffifts, 2001: Xu \& Tenenbaum, 2007)

Data
 Distribution:

Hypothesis A:

Hypothesis B:

Hypothesis C:

Ideal Learner Model

- Specify a Hypothesis Space of concepts
- Specify a Prior over hypotheses
- Specify a Likelihood function
- Specify the environment
- In a Bayesian learning model, learning corresponds to the movement of probability mass over a hypothesis space.

Kinship Acquisition Phenomena

Kids learn their kinship system

tapuna-tane
tapuna-wawine
matua-wawine

Kids learn their kinship system

Young kids prefer concrete referents

Young kids prefer concrete referents

I : What is an uncle?
S: Uncle Anthony
I: Tell me everything you know about an uncle. S: Uncle Henry

Young kids prefer concrete referents

Older kids over-generalize

Older kids over-generalize

I: Tell me everything you know about an uncle.

S: He's a man.
I: What kind of a thing is an uncle?
S: He's a man.
5;4 YO
(Benson \& Anglin, 1987)

Older kids over-generalize

https://mollicaf.github.io/kinship.html

Generalization shifts from characteristic to defining features

Generalization shifts from characteristic to defining features

- This man your daddy's age loves you and your parents and loves to visit and bring presents, but he's not related to your parents at all. He's not your mommy or daddy's brother or sister or anything like that. Could that be an uncle?
- Suppose your mommy has all sorts of brothers, some very old and some very, very young. One of your mommy's brothers is so young he's only 2 years old. Could that be an uncle?

Family Tree Data Collection ($\mathrm{N}=4$)

Feature Matrix

Elicited Features

Hypothesis Space

Defining:

Tree Set Moving
 Operations
 Gender Age
 Inputs

Child
Parent
Spouse
Union
Intersection
Difference
Complement

Female
Male
SameGender

SameGeneration
ParentGeneration
GparentGeneration

All
Speaker Individual

Set
 Operations
 Inputs

Union Intersection
Difference
Complement

Feature

Hypothesis Space

Defining Examples:

1. All
2. Tito
3. Male(Parent(X))

Characteristic Examples:

1. outgoing
2. union(outgoing, nosy)
3. difference(red-head, sarcastic)

Characteristic-to-Defining Shift

Likely to use

Unlikely to use

Characteristic-to-Defining Shift

- Characteristic
- Defining

References

- Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407(6804), 630-633.
- Fodor, J. A. (1975). The language of thought. Harvard University Press.
- Goodman, N. D., Tenenbaum, J. B., Feldman, J., \& Griffiths, T. L. (2008). A rational analysis of rule-based concept learning. Cognitive science, 32(1), 108-154.
- Kemp, C. (2012). Exploring the conceptual universe. Psychological review, 119(4), 685.
- Mollica, F., \& Piantadosi, S. T. (in press). Logical word learning: The case of kinship. Psychonomic Bulletin \& Review
- Piantadosi, S. T., Tenenbaum, J. B., \& Goodman, N. D. (2012). Bootstrapping in a language of thought: A formal model of numerical concept learning. Cognition, 123(2), 199-217.
- Piantadosi, S. T., Tenenbaum, J. B., \& Goodman, N. D. (2016). The logical primitives of thought: Empirical foundations for compositional cognitive models. Psychological review, 123(4), 392.
- Shepard, R. N., Hovland, C. I., \& Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological monographs: General and applied, 75(13), 1.

