Computational Cognitive Science Lecture 16: Compositionality

Guest Lecturer: Frank Mollica

Disjunctive Normal Form

RED

Conjunctive Normal Form

(Sheperd et al., 2008)

Disjunctive Normal Form

(RED ^ SMALL) v (GREEN ^ LARGE)

Conjunctive Normal Form

(RED v LARGE) ^ (GREEN v SMALL)

(Sheperd et al., 2008)

Disjunctive Normal Form

(GREEN ^ TRIANGLE) V (GREEN ^ LARGE) V (RED ^ SQUARE ^ SMALL)

Conjunctive Normal Form

(GREEN V SQUARE) ^ (GREEN V SMALL) ^ (RED V TRIANGLE V LARGE)

START | DISJ | CONJ | RED

 $\begin{array}{c} \mathrm{START} \rightarrow \mathrm{DISJ} \\ \mathrm{DISJ} \rightarrow \mathrm{CONJ} \\ \mathrm{DISJ} \rightarrow \mathrm{CONJ} \lor \mathrm{DISJ} \end{array}$

- Productivity:
 - The language generates all licit hypotheses even those unseen
- Systematicity:
 - The function/meaning of a complex hypothesis is determined by its structure and primitive components

Rational Rules

- Hypothesis Space:
 - All functions generated by the grammar
- Prior:
 - Augment the grammar with probabilities
 - Implicitly favors simple expressions

(Goodman et al., 2008; Piantadosi et al., 2016)

 $\begin{array}{c} \text{DISJ} \stackrel{(1/2)}{\to} \text{CONJ} \\ \text{DISJ} \stackrel{(1/2)}{\to} \text{CONJ} \lor \text{DISJ} \end{array}$

$$P(h) = (1)(1/2)(1/2)(1/2) = (1/8)$$

Item description

Domain

Construct

"Three koalas"

Our Approach Formalize word learning as logical program induction.

Peirce (1868)

Ideal Learner Model

- Specify a Hypothesis Space of concepts
- Specify a **Prior** over hypotheses

Prior

Γ

Hypothesis

Behavior

(α

D

h

- Specify a Likelihood function

 Environment Data
- Specify the environment

Ideal Learner Model

- Specify a Hypothesis Space of concepts
- Specify a **Prior** over hypotheses
- Specify a Likelihood function
- Specify the environment
- In a Bayesian learning model, learning corresponds to the movement of probability mass over a hypothesis space.

Hypothesis Space

Tree Moving	Set Operations	Gender	Age	Inputs
Child Parent Spouse	Union Intersection Difference Complement	Female Male SameGender	SameGeneration ParentGeneration GparentGeneration	All Speaker (X) Individual

Hypothesis Space

Tree Moving	Set Operatio	ns Ger	nder	Age		Inputs
Child Parent Spouse	Union Intersection Difference Complement	Fer M Same	nale ale Gender	SameGenerat ParentGenera GparentGenera	tion tion ation	All Speaker (X) Individual
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$ \Rightarrow \text{parent(SET)} $ $ \stackrel{1}{\rightarrow} \text{child(SET)} $ $ \Rightarrow \text{lateral(SET)} $	$\begin{array}{ccc} \text{SET} & \xrightarrow{1} \\ \text{SET} & \xrightarrow{1} \\ \text{SET} & \xrightarrow{1} \\ \end{array}$	generation0(SET) generation1(SET) generation2(SET)	SI SE SET	ET $\xrightarrow{1}$ male(SET) T $\xrightarrow{1}$ female(SET) $\xrightarrow{1}$ sameGender(SET)

All Tito

- difference(generationO(X), s male(child(parent(par
 - female(child(parent(pa
- intersection(lateral(child(parent(parent(X)))), male(parent(X
- ifference(male(generation0(X)), child(male(c male(child(parent(female(;
 - difference(generation0(X), c male(difference(generation1

 - male(child(parent(female(difference(gener female(parent() 2
 - female(parent(pare

Mary

- female(parent(male(pare
- difference(female(generation1(X)), c female(difference(generation
- ifference(male(generation0(X)), child(female rence(male(generation0(Tito)), child(female(male(difference(child(parent(male(parent)

(Feldman, 2000)

Where does data come from? Context:

- Data Point:
 - Context
- Word uncle
- Speaker 🔾 Referent 🔾

How do we fit to the data?

• Size Principle Likelihood (e.g., Tenenbaum & Griffiths, 2001;

Xu & Tenenbaum, 2007)

Data Distribution:

How do we fit to the data?

• Size Principle Likelihood (e.g., Tenenbaum & Griffiths, 2001;

Xu & Tenenbaum, 2007)

Data Distribution:

Hypothesis A:

Hypothesis B:

Hypothesis C:

Ideal Learner Model

- Specify a Hypothesis Space of concepts
- Specify a **Prior** over hypotheses
- Specify a Likelihood function
- Specify the environment
- In a Bayesian learning model, learning corresponds to the movement of probability mass over a hypothesis space.

Marck (1996)

Young kids prefer concrete referents

- I: What is an uncle?
- S: Uncle Anthony
- I: Tell me everything you know about an uncle.
- S: Uncle Henry

Young kids prefer concrete referents

Older kids over-generalize

Older kids over-generalize

I: Tell me everything you know about an uncle.

- S: He's a man.
- I: What kind of a thing is an uncle?
- S: He's a man.

5;4 YO (Benson & Anglin, 1987)

Older kids over-generalize

https://mollicaf.github.io/kinship.html

Generalization shifts from characteristic to defining features

Generalization shifts from characteristic to defining features

- This man your daddy's age loves you and your parents and loves to visit and bring presents, but he's not related to your parents at all. He's not your mommy or daddy's brother or sister or anything like that. Could that be an uncle?
- Suppose your mommy has all sorts of brothers, some very old and some very, very young.
 One of your mommy's brothers is so young he's only 2 years old. Could that be an uncle?

Family Tree Data Collection (N=4)

Feature Matrix

Elicited Features

Hypothesis Space

Defining:

Tree Moving	Set Operations	Gender	Age	Inputs
Child Parent Spouse	Union Intersection Difference Complement	Female Male SameGender	SameGeneration ParentGeneration GparentGeneration	All Speaker Individual

Characteristic:

Set Operations	Inputs	
Union Intersection Difference Complement	Feature	

Hypothesis Space

Defining Examples:

- 1. All
- 2. Tito
- 3. Male(Parent(X))

Characteristic Examples:

- 1. outgoing
- 2. union(outgoing, nosy)
- 3. difference(red-head, sarcastic)

Characteristic-to-Defining Shift

Characteristic-to-Defining Shift

Defining

References

- Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. *Nature*, *407(6804)*, 630-633.
- Fodor, J. A. (1975). The language of thought. Harvard University Press.
- Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008). A rational analysis of rule-based concept learning. *Cognitive science*, *32(1)*, 108-154.
- Kemp, C. (2012). Exploring the conceptual universe. Psychological review, 119(4), 685.
- Mollica, F., & Piantadosi, S. T. (in press). Logical word learning: The case of kinship. *Psychonomic Bulletin & Review*
- Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2012). Bootstrapping in a language of thought: A formal model of numerical concept learning. *Cognition*, *123(2)*, 199-217.
- Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2016). The logical primitives of thought: Empirical foundations for compositional cognitive models. *Psychological review*, 123(4), 392.
- Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and memorization of classifications. *Psychological monographs: General and applied, 75(13)*, 1.