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Reading

Kemp, Perfors, and Tenenbaum, 2007. (link)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-7687.2007.00585.x


Priors

Having good priors is useful – we need them to generalize.

Where do priors come from?



Priors

Implicit, basic:

Light comes from overhead
If I got sick, it was probably something I ate (Garcia effect)



Priors

Yesterday’s posterior:

How likely is rain tomorrow?
How long will it take to find a free spot at the library?
How reliably do blickets activate my machine?



Priors

We have focused on priors about concrete hypotheses:

Biases in coins and consumer choices
How often background causes produce an effect
What number concepts are people likely to think of



Generalization and abstraction

This is all useful, but what about

learning to generalize beyond our experience?
learning abstract concepts?



Generalization and abstraction

E.g., discovering

people don’t always agree: Pineapple pizza
people aren’t always right: whipped garlic, not hummus
shape is often a marker of category membership
causality without contact is more common in some domains
than others



Generalization and abstractions

Enter overhypotheses: Hypotheses about hypotheses.



Overhypotheses

Imagine you have a bag of marbles. You pull out a red marble.

What’s the probability that the next marble is red?

What distributions of colors are likely?

(Based on Kemp, Perfors, & Tenenbaum (2007;link))

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-7687.2007.00585.x


Overhypotheses

Your answer depends on how homogeneous you think the bag is.

Now imagine you’ve seen five bags of marbles and pulled two
marbles out of each:

green, green
blue, blue
blue, blue
red, red
yellow, yellow

Now how likely is it that the next marble is red?



Overhypotheses

What if you’d instead seen:

green, blue
blue, blue
blue, red
red, yellow
yellow, green

Now how likely is it that the next marble is red?



Feature variability

We are able form expectations about how variable features are.

Kemp et al. developed a computational model to explain these
phenomena.



Kemp et al.’s model

Recall the Dirichlet distribution, and how we can parameterize it in
terms of concentration (α) and bias (β):∑

i βi = 1
α > 0

Previously, we picked α and β. Here we learn them.



Kemp et al.’s model

α ∼ exponential(1) (i.e., homogeneous bags are more likely)

β ∼ Dir(1, 1, ..., 1) (uniform)

θi ∼ Dir(αβ1, αβ2, ...): The proportions for the i th bag

p(α|d) ∝ p(d |α)p(α)

p(d |α) =
∫

dθp(d |θ)p(θ|α)

We can infer distributions over α, β, and θ w/Monte Carlo methods.



Kemp et al.’s model

Figure 1a from Kemp et al.



Kemp et al.’s model

Figure 3 from Kemp et al.: Predictions of their hierarchical model



Kemp et al.’s model

Figure 3b from Kemp et al.: Predictions of a non-hierarchical model,
for contrast



Kemp et al.’s model

This model can explain other phenomena, e.g., that people are
quicker to generalize from some features than others:

(Fig. 4 from Kemp et al., based on data from Nisbett et al. 1983)



Shape bias

This model can also help explain shape bias:

Children tend to classify rigid objects based on their shape,
rather than their color, material, or size
Linda Smith and colleagues (2002) provided evidence that this
bias is learned from experience (or at least can be), using a
training study



Shape bias

In categorization, our hypotheses dictate what gets grouped with
what. We can treat category labels as just another feature.



Shape bias

But how do we decide our basis for grouping things together?

What features are informative, and how?

Overhypotheses can help us decide what features are diagnostic of
category membership

e.g., shape, material, size, solidity

Figure 1b from Kemp et al.



Shape bias

xi is a (categorical) feature; x1 is shape, x2 is material.

For a given general kind of thing k we’re dealing with,

αk
i ∼ exponential(1)

If we see rigid objects (k = 1) with a similar shape go together but
can have different materials:

low values of α1
1 are likely (homogeneous shape)

high values of α1
2 are likely (heterogeneous material)

If we see that piles of the same material (k = 2) go together
regardless of their shape, the converse is true for α2

i .



Shape bias

Where does k come from?

How can we learn what different kinds of things there are?

Intuition behind the expanded model:

Each category is a member of an “ontological kind”
We don’t know how many ontological kinds there are
Each ontological kind has an associated set of parameters that
govern the behavior of its members

Have we encountered something like this elsewhere in the course?



Shape bias

Recall model of individual differences in Navarro et al.:

Each person is a member of a cluster
We don’t know how many clusters there are in our data set
Each cluster has an associated set of parameters that govern
the behavior of its members

We can use the same “Chinese restaurant process” prior over
partitions.



Shape bias

The full generative model (from the Appendix of Kemp et al.):

z ∼CRP(γ)
αk ∼exponential(λ)
βk ∼Dir(1)
θi ∼Dir(αziβzi )

yi |ni ∼multinomial(θi)

Armed with this generative model, we can use MCMC methods like
Stan does to make predictions.



Discovering ontological kinds

Trained on category assignments and feature labels. . .

(Figure 7 from Kemp et al.)



Discovering ontological kinds

The model inferred two “ontological kinds” and was able to classify
items as being in new categories but known kinds.



Questions

Human cognition is very flexible – how can models capture this
flexibility?

Hand-picked parametric overhypotheses may not suffice
People tend to make judgments quickly – how can we capture
this efficiency, and the trade-offs that entails?
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