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Causality

Optional:

Chapter 1. Pearl, J. Causality. (2009).
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir,
T., & Danks, D. (2004). “A theory of causal learning in
children: causal maps and Bayes nets”. Psychological review.



Causality

Last time, we focused on an associative model of causal learning.

Association can be a clue that some causal relationship is at work,
but it’s neither necessary nor sufficient. Consider:

The relationship between the gas pedal and car speed when
someone is maintaining a constant speed over hills.
There has been a negative correlation between number of
pirates and mean global temperature since the early twentieth
century.



Counterfactual theories of causality

“We think of a cause as something that makes a difference,
and the difference it makes must be a difference from what
would have happened without it. Had it been absent, its
effects—some of them, at least, and usually all—would
have been absent as well” (David Lewis)

A cause is something that makes a difference
If the cause had been changed, its effects would have changed



Counterfactual theories of causality

What does it mean to change a cause?
“If W were the case, I would be the case” is true in the
actual world if and only if either (i) there are no possible
W-worlds; or (ii) some W-world where I holds is closer to
the actual world than is any W-world where I does not
hold.” (Lewis; changing variable names)

How do we judge the closeness of two worlds?

Lewis’s give a (complicated) account; but a newer
intervention-based approach has become popular.



Counterfactual theories of causality

Example: Parties, wine, and insomnia. Suppose we get insomnia
after partying and wine; all three are correlated.

In these graphs, arrows (edges) between nodes go from causes to
their effects.

Q: How might we distinguish between these two explanations?
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). “A theory of causal learning
in children: causal maps and Bayes nets”. Psychological review.



Interventions

A: Intervene on one or more of the variables; do something to them.

What if we take Lewis’s most-similar W ′ world to be one where we
intervene on W to make it W ′?

Pearl: Interventions (real and counterfactual) are all we need to
reason about causality.



Interventions

Intuition: The causes of I are the things that change I even when
we hold other variables constant.

Pearl (2009, p24):

Px (vi |pai) = P(vi |pai) for all Vi /∈ X whenever pai is con-
sistent with X = x, i.e., each P(vi |pai) remains invariant
to interventions not involving Vi .

(where pai are the parents of vi in a causal graphical model)



Causal graphical models

Graphs like this

aren’t just convenient visual aids, but part of a powerful causal
toolkit.



Causal graphical models

Causal graphical models combine
1 Directed graphical models (aka Bayes nets)
2 The do operator



Directed graphical models

Graphical models capture probabilistic (in)dependencies. The graph

implies that W and I are marginally dependent, but independent
conditional on their shared parent P.



Directed graphical models

More generally, a directed graphical model implies that we can
factorize the distribution P(x1, x2, ..., xN) into

∏N
i=1 P(xi |pai)

(again, pai denotes xi ’s parents.)

Bayes nets are acyclic, e.g.,

A↔ B
A→ B,B → C ,C → A

are not valid.

If A causes B and vice versa, we can “unroll” our events in time,
e.g., At → Bt+1, Bt → At+1



Directed graphical models

If we specify Bayes nets corresponding to causal intuitions, they
tend to have sensible independences. E.g.,

light switch (s) → closed circuit (c) → LED illuminates (l)

This factorizes into P(s)P(c|s)P(l |c):

If we condition on a particular value of c , the switch no longer
influences the LED
If we condition on s, c still affects l



Directed graphical models

. . . but this isn’t enough. Consider

bacterial infection → infection symptoms
infection symptoms → antibiotics
bacterial infection → death-by-infection ← antibiotics

If we condition on taking antibiotics, death may be more likely.

This is consistent with observing someone is taking antibiotics, but
doesn’t tell us if we should take antibiotics.



The do operator

If we want our model to help us:

make decisions

fully identify causal relationships, e.g.,

X → Y → Z versus Z → Y → X

we need to distinguish between observations and interventions.

Enter the do operator.



The do operator

Intuition: do(x) means “change x , affecting nothing else”.

More formally: Mutilate (yes, mutilate) the graph by removing
edges from x ’s parents to x . Then condition on x .

If our graph is correct and we know the probability distributions,
this causal graphical model allows us to make inferences from any
combination of observations and interventions.



The do operator



Causal graphical models

With this machinery, we can automate causal discovery.

Very difficult in practice due to

unknown latent variables
unknown probability distributions
the large number of possible causal graphs underlying N
variables:

N2 − N edges → 2N2−N graphs
Event removing cycles, N = 10→ |G | = 4.2E18



Causal model theories

We can also ask “do people make causal inferences that are
consistent with using the machinery of causal graphical models”?

Like Tenenbaum’s model of concepts, this is a rational model: It
predicts the behavior of an agent that behaves in an optimal way,
according to a particular definition of optimality, given certain
assumptions.



Causal model theories

Causal graphical models can give predictions about causal structure
from independence information alone!

Causal identification is usually only possible with interventions or
other constraints.

However, testing for statistical dependence is very data intensive
whereas people make causal judgments quickly.



Causal model theories

A Bayesian approach can be as sample-efficient as people are, but
requires assumptions about P(vi |pai).

The standard assumption for generative causes is that they are
individually sufficient to bring about their effects, but can
sometimes fail (independently).



Noisy-OR

This is the “noisy-OR” parameterization:

P(vi |pai) = 1−
∏

j∈pai

(1− wj)

where wj is the weight or causal power of a cause, assuming it is
present or active.

For example, if three causes are present and all have a weight of
0.75, the probability of the effect is 1− 0.253, or 63/64.



Noisy-OR

Cheng (1997): People made judgments consistent with MLE
estimates of w under a noisy-OR causal graphical model.

(Though it was Glymour (1998) who framed her results in these
terms)



Causal model theories

Since Cheng (1997), there have been many developments, including
models and data related to

The human ability to learn about causal structure as well as
strength
People’s expectations (priors) about causal relationships
Active learning of causal relationships
Learning more complex causal relationships
Time and causality



Causal model theories
Example: A model of how people learn structure and strength.

(Clipped from Figure 1 in Griffiths and Tenenbaum, 2005)



Causal model theories

There has also been evidence about the limits of causal model
theories, e.g., in explaining

Order effects that are not predicted by causal graphical models
Failures to learn structure in the presence of many variables
Failures to accurately track detailed probabilities

These have inspired new models, most of which build on causal
graphical models.



Coming up

The assignment
Guest lecture – more recent work in causality
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