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Readings

e Battleday, Peterson, & Griffiths (2020) (link)


(https://www.nature.com/articles/s41467-020-18946-z)

Categorization

We have learned about prototype and exemplar models of
categorizations. Both try to account for how we categorize novel
stimuli based on our past experiences.

@ prototype models: the category membership of a new stimulus
is calculated using a decision rule based on similarity to the
protypes of candidate categories.

@ exemplar models: decision rule based on summed similiarity to
to all known members of the category.



Today

@ Recap and and intuition of prototype and exemplar models.
@ How can we test these models with real-world stimuli?



Categorization

Nosofsky (1987)

@ In each trial, participants saw one of 12 colors and needed to
classify the color into categories A or B. They then received
feedback.

o After a learning period. The classification responses are then
taken as data to evaluate categorization models.

category A category B



Categorization
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Categorization

category A category B
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We can visualize the category as triangle (A) or square (B). The
participants never saw a triangle or square.



Categorization

Stimuli are represented in
psychological space
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Categorization

Prototype model Exemplar model
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Categorization: protoype model
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Categorization: exemplar model
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Categorization: protype vs exemplar model

Prototype model Exemplar model
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Categorization: interim summary

Compared to the prototype model, the exemplar model can express
much more complex decision boundaries.



Categorization
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Studies have used highly controlled stimuli, which incurs very
simplified stimuli. They showed much support for exemplar models.



Categorization

What is not known is whether exemplar models account for how we
categorizate real-world stimuli

@ Possibly, categorization experiments on simplified stimuli do
not capture how we categorize stimuli of our every-day
environment (ecological validity).

@ Real-world stimuli are high-dimensional as opposed to
controlled stimuli. Dimensionality matters for computing
similarity.

Are the exemplar models still better for real-world stimuli?



Categorization of real-world stimuli
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The authors test categorization on images of a machine learning
dataset (CIFAR10), which contains 10 categories of objects.



Human behaviour
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10,000 images, 50 repetitions each (across 2570 participants).



Stimulus space

The authors chose the latent dimensions of convolutional neural
networks (CCNs), pre-trained on image classification.

C3: 1. maps 16@10x10

NPUT C1: feature maps S4: 1. maps 16@5x5
6@28x28

$2: 1. maps

32x32
6@14x14

Top: LeNet (LeCun et al., 1998). Bottom: Neocognitron (Fukushima,
1020\



Psychological space

high-dim representations psychological space
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2D projection of the high-dimensional
psychological space (for visualization)

A K-dimensional vector (AlexNet: K = 4096) of the last layer of a
CNN trained on ImageNet serves as the stimulus representation.
After optional scaling (see next slide), this is our psychological space
and we can compute psychological distance and transform them into
similarities (as before).



Scaling

Each image is represented by a K-dimensional vector (AlexNet:
K=4096). Some dimensions are more relevant than others. The
authors consider transformations of the stimulus space before
computing the Eucliden distance as psychological distance.

@ classic: no transformation

@ linear: stretch and rotate such that the variations across
images are equal in all directions (whitening)

@ quadratic: as linear, but transform for each category.



Other stimulus spaces

Il Airplane
B Automobile
Bird

[ Cat
N Dear
[ Dog
. Frog
I Horse
e Ship
I Truck

AlexNet ’ DenseNet



Evaluation

Now compare the predicted categorization from classic prototype
and exemplar model for different stimulus representations with
human behaviour via log-likelihood and AIC.
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@ No substantial benefit for exemplar over prototype models.
@ Large effect of the stimulus representations.



Exemplar and prototype models in high dimensions
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Summary

@ We revisted exemplar and prototype models and introduced the
intution of decision boundaries in psychological space.

@ Models have so far been tested in abstracted, low-dimensional
stimulus spaces. Here, exemplar models often outperform
prototype models.

@ In high-dimensional, real-world stimulus spaces, both models
perform comparably.

Studying real-world complexity and behaviour:

@ A fundamental challenge of the brain is to deal with the
complexity of the world. This challenge shapes the mechanisms
of the mind.

@ Principles gleaned from abstracted tasks may not scale to
real-world settings.
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