# Computational Cognitive Science

Lecture 7: Model comparison and selection

Chris Lucas

School of Informatics

University of Edinburgh

October 11, 2022

# Readings

- Chapter 10 of F&L
- "Ockham's razor and Bayesian Analysis" (link)

#### Recommended:

• "A note on the evidence and Bayesian Occam's razor" (link)

## Model comparison

We have discussed estimating parameters conditional on a model.

- That may be all we need, if we can capture different theories as parameter choices in a single model
- In practice, we may want to compare qualitatively different models

How do we choose between models?

# Criteria for choosing models

We prefer models that are

- Predictively useful
- Compatible with our data
- Likely to be correct, or closer to a correct model

(Understandable, too)

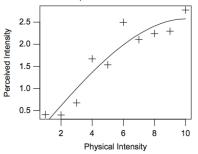
# Two models of perceived intensity

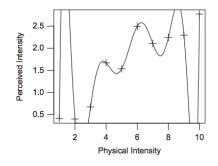
- M<sub>1</sub>: Perceived intensity is a 2nd order polynomial function of physical intensity
- M<sub>2</sub>: Perceived intensity is a **9th** order polynomial function of physical intensity

(Ignore the fact that we could distinguish between these models w/a single model and suitable priors over parameters)

# Two models of perceived intensity

Both models, with MLE fits<sup>1</sup>:





Which is better?

<sup>&</sup>lt;sup>1</sup>Figure 10.1 in F&L.

#### Two models

- Is the complex polynomial going to give good predictions?
  - $p(y_{K+1}|\mathbf{y}, \mathcal{M}_2)$
- Is the complex polynomial compatible with our data?
  - $p(\mathbf{y}|\mathcal{M}_2)$
- Is the complex polynomial the right generative model??
  - $p(\mathcal{M}_2|\mathbf{y})$

#### An important distinction:

- A specific 9th order polynomial, versus
- **some** 9th order polynomial.

# Predictive accuracy

- Is the complex polynomial going to give good predictions?
  - $p(y_{K+1}|\mathbf{y},\mathcal{M}_2)$

Suppose we have a model where all we care about is RMSE, and we can only obtain point-estimate predictions.

Are there any principles that should guide how we define a model?

Geman et al.<sup>2</sup> described *bias-variance dilemma*, explaining why "tabula rasa" models are not desirable.

<sup>&</sup>lt;sup>2</sup>"Neural networks and the bias-variance dilemma" (1992) by Geman, Bienentock, and Doursat.

#### Bias and variance

- The expected RMSE of a regression model can be decomposed:
  - Error due to bias: The difference between the expected predictions of the model (under all possible data) and the real mean
  - Error due to *variance*: How much the model's predictions vary as a function of the specific data it has been given

#### Bias and variance

- The ideal model:
  - predictions are matched to reality (in expectation); no bias-based error
  - predictions don't depend on idiosyncrasies of data; no variance-based error
  - Extreme version: A perfectly confident and accurate prior
- Highly flexible models will do poorly unless large data sets are available

The lesson: If we have a priori information or constraints, we should use them!

#### Two models

For probababilistic models, predictive accuracy relates to other desiderata:

- Is the complex polynomial compatible with our data?
  - $p(\mathbf{y}|\mathcal{M}_2)$
- Is the complex polynomial the right generative model?
  - $p(\mathcal{M}_2|\mathbf{y}) \propto p(\mathbf{y}|\mathcal{M}_2)P(\mathcal{M}_2)$

To answer these questions, we need the *marginal likelihood* of our data.

#### Two models

Marginal likelihood:

$$p(\mathbf{y}|\mathcal{M}) = \int_{\boldsymbol{\theta}} p(\mathbf{y}|\mathcal{M}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{M}) d\boldsymbol{\theta}$$
  
 $\neq p(\mathbf{y}|\mathcal{M}, \hat{\boldsymbol{\theta}})$ 

- Flexible models can accommodate a wide variety of patterns
- If those patterns are not present in our data, they're bad models

# Flexibility and overfitting: Likelihood

What if we specify  $p(\theta)$  at the start, and compute  $p(\mathbf{y}|\mathcal{M})$ ?

That's an excellent solution, when it's viable.

#### However:

- We must choose priors carefully
- ullet Integrating over  $oldsymbol{ heta}$  is often expensive or impossible

# Model comparison without marginal likelihood

What if we can't compute the marginal likelihood, but can compute likelihoods and MLEs?

• Compare predictive accuracy/likelihood on held-out test data

# Model comparison without marginal likelihood

#### What if we don't have a test set?

- E.g., using a data set where alternative models were fitted to the whole set
- Very few data points, s.t., estimating parameters already difficult

#### Three common approaches:

- **1** Likelihood ratios vs  $\chi^2$
- AIC and BIC
- Cross-validation

# Nested models and $\chi^2$

Suppose  $\mathcal{M}_1$  is a special case of  $\mathcal{M}_2$ ;  $\mathcal{M}_2$  has additional parameters and reduces to  $\mathcal{M}_1$  for specific values of these parameters. We can say  $\mathcal{M}_1$  is *nested* in  $\mathcal{M}_2$ .

Even if the additional parameters of  $\mathcal{M}_2$  are useless – they just allow it to fit noise – the negative log likelihood will be slightly lower.

### Nested models and likelihood ratios

However, under certain assumptions and as n goes to infinity, that improvement (times 2) will converge to a  $\chi^2$  distribution with df equal to the difference in dimensionality<sup>3</sup>.

As a result, one can compare the difference in MLE likelihoods to a  $\chi^2$  distribution to support or reject the hypothesis that the complex model is no better.

$$2 \cdot [\log(p(\mathbf{y}|\hat{\boldsymbol{\theta}_2}, \mathcal{M}_2) - \log(p(\mathbf{y}|\hat{\boldsymbol{\theta}_1}, \mathcal{M}_1))]$$

#### Caveats:

- If models are nested, there are often nice Bayesian approaches
- Null hypothesis significance test

<sup>&</sup>lt;sup>3</sup>To learn more, see Wilks' theorem (link)

### **AIC**

Another approach: "How different is the distribution implied by my model from the real-world distribution of human behavior?"

How can we quantify this difference?

Kullback-Leibler divergence<sup>4</sup>:

$$\int_{\mathbf{y}} R(\mathbf{y}) \log \frac{R(\mathbf{y})}{p_M(\mathbf{y})} d\mathbf{y}$$

If these distributions are identical, divergence is zero. If the model assigns zero probability density to events that are possible, it's  $\infty$ .

<sup>&</sup>lt;sup>4</sup>Wikipedia article. Don't call it a distance.

### **AIC**

AIC approximates relative KL divergences of models to target distribution (e.g., relative probabilities of behaviors):

$$AIC = 2k - 2 \cdot \log(p(\mathbf{y}|\boldsymbol{\theta}_{MLE}))$$

- Asymptotically agrees with leave-one-out cross-validation
- There are many alternatives, but AIC is simple and popular

### **AIC**

#### Caveats:

- Approximates hold-one-out cross-validation, not extrapolation
- Approximation is asymptotic; not necessarily great for small data sets
- Parameter counting is sometime a poor way to evaluate complexity; see text
- Cross-validation makes fewer assumptions, is intuitive and robust – generally better
- ullet Consider alternatives like  ${
  m AIC}_{\mathcal C}$



The best way to assess a model's predictive accuracy: Predict with it.

# Prediction (again)

The best way to assess a model's predictive accuracy: Predict with it.

- Sequester a subset of your data. Don't touch it. Don't look at it. Pretend it doesn't exist.
  - To see if a model can predict the judgments or behavior of new participants or in new conditions, hold out participants and/or conditions
  - Likewise for future judgments given past judgments

# Prediction (again)

The best way to assess a model's predictive accuracy: Predict with it.

- Fit models on separate data, compare their predictive log likelihoods on the sequestered data
  - No need to penalize model complexity

#### Cross-validation

If you want robust and efficient estimates of predictive accuracy, you can repeat those steps for your entire data set;

- Don't look at anything before building the model
- Define an automatic policy for partitioning and fitting the model
- Repeat for K "folds" (train on K-1, evaluate on 1)
- Offers approximate predictive likelihoods for new folds

In practice, cognitive scientists rarely use fully held-out test sets.

- Tend to look at data when tuning model
- Cross-validation with seen-data is still better than testing and training on the same data

## Summary

If we want to choose between models, we can do the following:

- Compare marginal likelihoods
  - Easy in concept, difficult (sometimes impossible) in practice
- Compare predictive loss with fully held-out evaluation set(s)
  - In practice, typically just one partitioning
- Ompare predictive losses w/cross-validation
  - A pragmatic approach given sparse data
  - Mitigates the worst of the "train on test" problem
  - Good partitionings require care
- AIC or likelihood-ratio test
  - Blunt instrument, but common
  - See also the AIC<sub>C</sub>, BIC, WAIC, ...