Computational Cognitive Science

Lecture 5: Parameters and Probabilities 2

Chris Lucas

School of Informatics
University of Edinburgh

October 4, 2022

Readings

- Chapter 6 of F\&L

MLE/MAP Recap

Last time, we discussed MLE and MAP estimates:

- MLE: Choose the $\boldsymbol{\theta}$ that makes \mathbf{y} most probable, ignoring $p(\boldsymbol{\theta})$.
- MAP: Choose the $\boldsymbol{\theta}$ that is most probable given \mathbf{y}.

MAP with non-uniform priors can improve estimates and reduce overfitting.

In general, parameters are continuous, so the MAP maximizes the density - the probability that the parameters take those values is still infintesimal.

Today

- Estimating parameters in a simple discrete-choice experiment
- Compare MLE, MAP, and Bayesian methods
- Brief introduction to conjugate priors

Left-right bias

In 1977, Nisbett and Wilson reported a study where people has been asked to choose between four identical pairs of stockings: A, B, C, D from left to right ${ }^{1}$.

This is similar to the coin example from C6 of F\&L, but it involves more than two outcomes and is about human decisions.
${ }^{1}$ Nisbett, R. E., \& Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84(3), 231.

Left-right bias

Suppose we observe 8 choices.

Choice	A	B	C	D
Number	0	2	2	4

We want to know how biased people are in general and predict the judgments of the remaining 44 participants.

We can capture this with a multinomial distribution:

$$
P(\mathbf{y} \mid \boldsymbol{\theta})=\frac{\left(\sum_{i} y_{i}\right)!}{\prod_{i} y_{i}!} \prod_{i} \theta_{i}^{y_{i}}
$$

where y_{i} is the count of choices in the $i^{t h}$ category and $\sum_{i} \theta_{i}=1$.
What are our options for estimating $\boldsymbol{\theta}$?

Left-right bias

(1) MLE
(c) MAP
(3) Bayesian approaches

1. $\mathrm{MLE}: \arg \max _{\boldsymbol{\theta}} L(\boldsymbol{\theta} \mid \mathbf{y})$

The multinomial's parameters are choice probabilities, and one can show that the MLE parameters are just the proportions:

$$
\theta_{i}=\frac{y_{i}}{\sum_{k} y_{k}}
$$

Choice	A	B	C	D
Obs. $(\mathrm{n}=8)$	0	2	2	4
$\theta_{\text {MLE }}$	0	.25	.25	.5

This maximizes the probability of the data in retrospect, but it's not ideal for predictions.

For example, someone will probably, eventually, choose option A.

2. MAP estimate: $\arg \max _{\boldsymbol{\theta}} L(\boldsymbol{\theta} \mid \mathbf{y}) p(\boldsymbol{\theta})$

If we know or believe something about choices in this setting, we should probably use it.

- We might expect that any bias won't be extreme; a few people will probably choose every option
- Like a coin where we expect to be close to fair

How do we express this?

Priors

In choosing priors, we ideally want a distribution that:

- has support for all remotely possible values, i.e., assigns non-zero probability to them
- is easy to interpret and communicate
- allows efficient computation of a posterior distribution

Dirichlet distribution

There are many options, but here we might use a Dirichlet distribution with hyperparameters $\boldsymbol{\alpha}$:

$$
p(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\frac{1}{B(\boldsymbol{\alpha})} \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

- Can capture intiutions about differences in proportions and in concentration
- α : "Concentration parameters"
- $\alpha_{i}>0$, one per θ
- "virtual observations"
- Can translate beliefs about $P\left(c_{0}<\theta_{i}<c_{1}\right)$ into hyperparameters
- Familiar to many cognitive scientists

Dirichlet distribution

$$
p(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\frac{1}{B(\boldsymbol{\alpha})} \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

The beta distribution (F\&L C6) is 2-group Dirichlet distribution.

Also, it is a conjugate prior for the multinomial distribution.

Conjugate priors

When the posterior probability function and the prior have the same form, they're conjugate.

If we can find a reasonable conjugate prior for our likelihood function, life is easier:

- Simplifies computation
- Makes interpretation of the posterior easier

Conjugate priors

Some commonly-used likelihood/conjugate prior pairs:

Likelihood	Conjugate prior
Bernoulli	beta
binomial	beta
categorical	Dirichlet
multinomial	Dirichlet
normal	normal

Dirichlet-multinomial

Our prior:

$$
p(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\frac{1}{B(\boldsymbol{\alpha})} \prod_{i} \theta_{i}^{\alpha_{i}-1} \propto \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

Our likelihood:

$$
P(\mathbf{y} \mid \boldsymbol{\theta})=\frac{\left(\sum_{i} y_{i}\right)!}{\prod_{i} y_{i}!} \prod_{i} \theta_{i}^{y_{i}} \propto \prod_{i} \theta_{i}^{y_{i}}
$$

Our posterior:

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) \propto \prod_{i} \theta_{i}^{\alpha_{i}-1} \prod_{i} \theta_{i}^{y_{i}}=\prod_{i} \theta_{i}^{\alpha_{i}-1+y_{i}}
$$

This is an un-normalized Dirichlet distribution; divide by $B(\boldsymbol{\alpha}+\mathbf{y})$ and we have a Dirichlet. See text for more detail in a 2 -choice setting.

Dirichlet-multinomial

Our prior is $\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ and our posterior is $\operatorname{Dir}\left(\alpha_{1}+y_{1}, \ldots, \alpha_{K}+y_{K}\right)$.

- We can think of $\boldsymbol{\alpha}$ as pseudo-observations.
- If we believe a bias for each group is equally likely, $\alpha_{i}=\alpha$.
- As α increases, the Dirichlet distribution increasingly favors an equal distribution over choices.
- For $\alpha=1$, all valid parameter combinations are equally likely.
- $\alpha=1 / K$ is a Jeffreys prior; see the text.

Left-right bias

If we think extreme biases are unlikely, we can use $\alpha=2.0$. ${ }^{2}$
The mode of a Dirichlet distribution is $\theta_{i}=\frac{\alpha_{i}-1}{\sum_{k} \alpha_{k}-K}$.

Choice	A	B	C	D
Obs. $(\mathrm{n}=8)$	0	2	2	4
$\theta_{\text {MLE }}$	0	.25	.25	.5
$\theta_{\text {MAP }}$.08	.25	.25	.42

${ }^{2}$ Under this choice, each parameter's marginal probability of being between . 1 and .4 is about 70 percent.

Left-right bias

If we think extreme biases are unlikely, we can use $\alpha=2.0$. The mode of a Dirichlet distribution is $\theta_{i}=\frac{\alpha_{i}-1}{\sum_{k} \alpha_{k}-K}$.

Choice	A	B	C	D
Obs. $(\mathrm{n}=8)$	0	2	2	4
$\theta_{\text {MLE }}$	0	.25	.25	.5
$\theta_{\text {MAP }}$.08	.25	.25	.42
Data $(\mathrm{n}=52)$.12	.17	.31	.40

3. Bayesian approaches

The MAP estimate doesn't account for uncertainty or the shape of $p(\boldsymbol{\theta} \mid \mathbf{y})$.

- If our prior is uniform, MAP $=$ MLE; we're back to estimating zero-probabilities.

Compare two densities, where θ is the bias of a coin toward heads:

- The mode of the posterior is the same for both.
- Which are we more confident of?
- Which coin do we think is more likely to come up heads?

3. Bayesian approaches

If we have a posterior distribution, we can ask:

- What is the expected value of $\alpha_{i} ?^{3}$

$$
E\left[\theta_{i} \mid \mathbf{y}\right]=\int_{\theta_{i}} \theta_{i} f\left(\theta_{i} \mid \mathbf{y}\right) d \theta_{i}
$$

- What is the probability that the next choice/toss will be in category $i\left(x_{K+1}=i\right)$?

$$
P\left(x_{K+1}=i \mid \mathbf{y}\right)=\int_{\theta_{i}} P\left(x_{K+1}=i \mid \theta_{i}\right) f\left(\theta_{i} \mid \mathbf{y}\right) d \theta_{i}
$$

Because θ_{i} is $P\left(x_{K+1}=i \mid \theta_{i}\right)$, these are the same (here).

[^0]
3. Bayesian approaches

For a Dirichlet-multinomial,

$$
P\left(x_{K+1}=i \mid \mathbf{y}, \boldsymbol{\alpha}\right)=\frac{\alpha_{i}+y_{i}}{\sum_{j}\left(\alpha_{j}+y_{j}\right)}
$$

Choice	A	B	C	D
Obs. $(\mathrm{n}=8)$	0	2	2	4
$\theta_{\text {MLE }}$	0	.25	.25	.5
$\theta_{\text {MAP }}$.08	.25	.25	.42
$P\left(x_{K+1}=i\right)$.12	.25	.25	.38
Data $(\mathrm{n}=52)$.12	.17	.31	.40

3. Bayesian approaches

We can also answer other questions, e.g.,

- How likely is it that people are choosing option D more than 25 percent of the time?
- $P\left(\theta_{4}>.25 \mid \mathbf{y}\right)$
- How likely is it that people are choosing uniformly (null hyp)?
- For all $i, P\left(\theta_{i}=.25 \pm \epsilon \mid \mathbf{y}\right)$
- What is the standard deviation of θ_{i} ?
- What is the probability that $\theta_{1}+\theta_{2}>\theta_{3}+\theta_{4}$?

3. Bayesian approaches

To summarize, some advantages of Bayesian approaches over MLE:

- Sensible priors and averaging both help us avoid overfitting
- This allows more complex models, including cases where MLEs aren't unique
- Can answer diverse questions, e.g., support for null hypotheses
- Naturally lead to hierarchical models
- Individual differences - next time
- We used a classic conjugate prior
- Not always so easy; see C7 of F\&L

3. Bayesian approaches

Why doesn't everyone use Bayesian methods?
(1) Computational complexity

- Conjugate priors aren't always appropriate
- Inference can be computationally expensive

3. Bayesian approaches

Why doesn't everyone use Bayesian methods?
(2) Convention, momentum, philosophical differences

- More psychologists use/understand* frequentist methods
- Out-of-the-box hypothesis tests are less work
- Suspicion about priors

3. Bayesian approaches

Why doesn't everyone use Bayesian methods?
(3) Technical barriers

- Bayesian methods expose more mathematical detail
- Until recently, few good tools for running non-trivial Bayesian analyses

But:

- Faster computers
- Friendlier/better tools, e.g. Stan
- Wider adoption and better dissemination
- Bayesian analyses much more common than 5-10 years ago
- Materials for wider audiences, e.g., Kruschke's "puppy book"

Summary

- MLE and MAP generate point estimates of the parameters
- Sensible priors can mitigate overfitting until MAP estimation
- Better yet: Bayesian methods - priors and integrating over parameters
- less prone to overfitting and allows better use of informative priors
- allows more questions to be answered more directly
- Conjugate prior distributions, where the prior and the posterior have the same form given a particular likelihood function
- Easily-interpretable posteriors
- Closed-form expressions for many quantities of interest

[^0]: ${ }^{3}$ Notice that we're writing down $f\left(\theta_{i} \mid \mathbf{y}\right)$ directly - we get this distribution for free; another nice property of the Dirichlet distribution.

