
2 From Words to Models
Building a Toolkit

This chapter introduces the basic terms required to enter the world of modeling while at
the same time providing an overview of the entire enterprise. For illustrative purposes,
our discussion focuses on a simple model that was developed 50 years ago to describe
how people make decisions in a speeded-choice task.

2.1 Response Times in Speeded-Choice Tasks

You are in the cognitive laboratory to participate in an experiment. A tight cluster of
300 lines at various orientations is projected onto the screen in front of you. Are they
predominantly tilted to the left or to the right? The experimenter has instructed you to
respond as quickly as possible by pressing one of two keys: “z” for “left” and “/” for
“right.” There are many such trials and in addition to being speedy, you are also asked
to be as accurate as possible. Because the orientations of individual lines within each
stimulus cluster are drawn from a distribution with considerable variance, the task is
quite difficult.

The procedure just summarized was from an experiment by Smith and Vickers (1988)
and is representative of a “choice reaction time” task. Although the task sounds simple,
the data from such experiments are strikingly rich and can provide a broad window into
human cognition. There are two classes of responses (correct and incorrect), and each
class is characterized by an entire distribution of response times across the numerous
trials of each type. A complete account of human performance in this quintessential
decision-making task would thus describe response accuracy and latency, and the rela-
tionship between the two, as a function of various experimental manipulations. For
example, the mean orientation of the lines might be changed or participants might be
instructed to emphasize speed over accuracy, or vice versa.

There currently exist a number of sophisticated models that can describe performance
in choice reaction time tasks (Brown and Heathcote, 2008; Ratcliff, 1978; Wagenmakers
et al., 2007), and we will explain some of those in detail later in Chapter 14. For present
purposes, we step back in time by approximately 50 years and illustrate the theoretical
challenges associated with modeling choice tasks by building a model from scratch.

We begin with the assumption that when a stimulus is presented, not all information
is available to the decision maker instantaneously. Instead, people gradually build up
the evidence required to make a decision. There are many ways in which this internal
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Figure 2.1 Graphical illustration of a simple random-walk model. The top panel plots five
illustrative sampling paths when the stimulus is non-informative. The bottom panel plots another
five sampling paths with a drift rate of 0.2 towards the top boundary (representing a “left”
response in the line-orientation task). Note the difference in the horizontal scale between panels.

build-up of evidence over time can be modeled. For simplicity, we assume that peo-
ple sample evidence in discrete time steps, where each sampled number represents a
“nudge” toward one decision or another. The magnitude of that nudge reflects how much
information is available in that single sample. The sampled evidence is summed across
time steps until a response threshold is reached. For example, when deciding whether
300 lines of various orientations are slanted to the right or the left, each sampling step
might involve the processing of a small number of lines and counting the left-slanted
vs. right-slanted lines. The sample would then be added to the sum of previous samples,
nudging it toward the “left” or “right” decision. This process instantiates what is known
as a “random walk” model of binary decisions. We illustrate the behavior of the model
in Figure 2.1.

The top panel shows five illustrative sampling paths. Each path corresponds to a single
choice trial in which the participant repeatedly samples evidence from the stimulus until
the sum of the available evidence is sufficient to make a response. This occurs when the
sampling path crosses one of the response boundaries, denoted by the two horizontal
dashed lines. For the sake of the argument, let us suppose the top dashed line represents
a “left” response and the bottom a “right” response. It can be seen that two out of the
five paths cross the upper (“left”) boundary, and the remaining two cross the “right”
boundary. This is because for the top panel the information was equally favorable to the
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26 From Words to Models

two alternatives, corresponding to a stimulus in which the 300 lines are scattered evenly
to the left and to the right. As one would expect, the probabilities of the two decisions
are (roughly) equal. We would also expect the two response types to have identical
response times on average: Sampling starts with zero evidence, and if the stimulus is
non-informative, then each sample is equally likely to nudge the path up or down. It
follows that if the boundaries for the two responses are equidistant from the origin,
response times – that is, the point along the abscissa at which a sampling path crosses
the dashed line – should be equal. With the small number of trials (n = 5) shown in the
figure this is difficult to see, but we will explore this fact later.

Now imagine how the model will behave when the evidence favors one decision over
the other, as expected when an informative stimulus is present. This introduces some-
thing called “drift” toward the favored threshold by “nudging” the sampled information
in one direction, as depicted in the bottom panel. In that panel, sampling has a drift rate
of 0.2, corresponding to a stimulus in which most of the 300 lines are slanting toward
the left. Under these circumstances, the drift will increase the probability of the evidence
crossing the upper boundary. Indeed, in this instance all of the five responses cross the
“left” boundary at the top, and no “right” responses occur. It is also apparent that the
absolute speed of responding is far quicker for the bottom panel than the top. Clearly,
having a highly informative stimulus permits more rapid extraction of information than
staring at a non-informative stimulus that defies quick analysis.

Now that you have at least an intuitive understanding of a random-walk model, con-
sider the following question: What do you think happens to the decision times for the
less likely responses – that is, “right” responses that cross the bottom boundary – as the
drift rate increases? That is, suppose there are many more trials than the five shown in
the bottom panel of Figure 2.1, such that there is ample opportunity for errors (“right”
responses) to occur. How would their response latencies compare to the ones for the
correct (“left”) responses in the same panel when the drift toward the upper boundary
is increased? Think about this for a moment, and see if you can intuit the model’s
prediction. Make a note of your guess. To check how accurate it is, we first reveal the
inner workings of the model that generated the random-walk paths in Figure 2.1.

2.2 Building a Simulation

2.2.1 Getting Started: R and RStudio

There are many ways in which models can be instantiated in a computer simulation. We
rely on the popular R programming language, which is a specialized environment for
statistical analyses in addition to being a full-fledged programming language. R is free
and can be downloaded from http://cran.r-project.org/ for a variety of different operating
environments (e.g., Windows, Mac, and Linux). We assume throughout that you have
access to R and that you have at least some limited knowledge of how to use it. In
particular, we assume that you know how to install packages from the CRAN repository
that can then be loaded into R via the library command.
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2.2 Building a Simulation 27

We cannot teach you R from the ground up in this book. However, all programming
examples that we provide in this book are extensively commented and it should require
only some limited assistance for you to reproduce those examples, even if you have
no programming background at all. All of our programs are available at the supporting
webpage, https://psy-farrell.github.io/computational-modelling/, which also contains
external links to other important and useful sites.

We chose R for this book not only because it is free, but because it also provides a
vast array of functions that can perform many of the operations required in computer
simulations (e.g., drawing random numbers from a variety of distributions) with great
ease. The existence of those functions allows programmers to focus on the crucial
elements of their modeling without having to worry about nitty-gritty details.

Although R comes with its own limited interface, we recommend another free
product, called RStudio, to interact with R. RStudio can be downloaded from
www.rstudio.com/ and it provides a very nice editor and many other helpful features
to simplify programming in R. Again, we cannot teach you how to use RStudio, but
once you have a working knowledge of how to write R programs (or “scripts” as they
are often called) in RStudio, you will be ready to tackle everything that follows from
here on.

2.2.2 The Random-Walk Model

The random-walk model that produced Figure 2.1 consists of just a few dozen lines of
R code. The first snippet shown in Listing 2.1 constitutes the core of the model and
suffices to generate predictions.

1 # random-walk model
2 nreps <− 10000
3 nsamples <− 2000
4

5 drift <− 0 . 0 # n o n i n f o r m a t i v e s t i m u l u s
6 sdrw <− 0 . 3
7 criterion <− 3
8

9 latencies <− r e p ( 0 ,nreps )
10 responses <− r e p ( 0 ,nreps )
11 evidence <− m a t r i x ( 0 , nreps , nsamples+1)
12 f o r (i in c ( 1 :nreps ) ) {
13 evidence [i , ] <− ←↩

cumsum ( c ( 0 , rnorm (nsamples ,drift ,sdrw ) ) )
14 p <− which ( abs (evidence [i , ] )>criterion ) [ 1 ]
15 responses [i ] <− s i g n (evidence [i ,p ] )
16 latencies [i ] <− p
17 }

Listing 2.1 A simple random-walk model

The program consists of three groups of statements, separated by blank lines. Just
like a book, programs are often written in paragraphs and adding a bit of white space
between “paragraphs” of statements can assist understanding. The first two statements
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28 From Words to Models

assign values to two variables (nreps and nsamples) that determine the behavior of
the simulation – namely, the number of random walks (i.e., decisions) to be conducted
and the number of times that evidence is being sampled for each decision. Those two
variables are mainly for book keeping and do not represent any theoretical construct.
Note that in R, we use <− as the assignment operator, which is preferable to the con-
ventional = in many other languages because it visually reinforces what an assignment
does: It copies the contents of whatever is shown on the right to the target variable on
the left.

The second group of statements (lines 5 to 7) assigns values to variables that have a
psychological content. We specify a drift rate, which determines the amount of evidence
that is available during sampling: The larger the drift rate, the more the random walk
is nudged toward a boundary. When drift rate is zero, as in the current case, then there
is no evidence available and the decision will be entirely random. We also specify the
noise in the evidence, via the standard deviation (sdrw) of the distribution from which
we will sample the evidence. Finally, we set the response criterion, which determines
the distance of the two boundaries (dashed lines in Figure 2.1) from the origin – that is,
the point corresponding to zero evidence.

The next few lines (9 to 11) create variables that are needed to keep track of the
simulation results. We create latencies and responses that start out being set to 0.
Note that those two variables are vectors rather than scalars, each with nreps elements.
We use the R built-in function rep() to create those vectors and simultaneously assign
them a value (0 in this case). Similarly, the variable evidence is a two-dimensional
matrix that has as many rows as there are to-be-simulated decisions, each of which
contains as many elements as there will be samples from the evidence distribution.

The heart of the simulation takes place within the loop defined by the statement:
for (i in c(1:nreps)). We assume that you have some basic familiarity with
loops: everything that is enclosed within the curly braces ( {...} ) following the for

statement is performed nreps times, with the variable i successively taking on the
values 1, 2, . . . , nreps across the iterations.

Line 13 is arguably the most important part of the program. This statement performs
the random walk by calling three different R built-in functions. The first function call is
rnorm(nsamples,drift,sdrw). Before we proceed, type “?rnorm” at the command
line in RStudio and read the help window that will appear. The help window should
clarify that what we are doing here is drawing nsamples observations from a normal
(Gaussian) distribution with mean drift and standard deviation sdrw. The samples
are returned as a single vector, which does not have a name yet but will ultimately be
assigned to the evidence matrix. Before we can make that assignment, however, we
need to execute two more function calls: We call c (0, ...) , where the ellipsis represents
the call to rnorm just discussed. The function c concatenates the arguments provided in
parentheses; all that happens here is that we add a leading zero to the random samples,
which represents the state of evidence at the very outset of the decision process. Finally,
we call cumsum and hand it the zero-prepended vector of samples. Type “?cumsum” and
read the help to understand what this final call does. If you need more information, type
cumsum(1:5) at the command line and it should become clear that the final result of
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2.2 Building a Simulation 29

Line 13 is a random walk toward one or the other evidence boundary (and beyond,
actually, but we will deal with that in a moment).

The outcome of those three function calls is assigned to the “ith” row in the matrix
evidence, which is indicated by the [i, ]. In R, we address elements of vectors or
arrays by enclosing the subscript(s) in brackets ( [...] ), separated by commas if there
is more than one dimension. For matrices, the first subscript addresses the row, and the
second the column of a matrix. If we omit a subscript (but retain the comma), we can
refer to an entire row at once – as we do here with [i, ], which refers to the ith row (i.e.,
all columns and the ith row). (We can also address an entire column at once with [ ,j]).

Thanks to Line 13, we now have a random walk that we can turn into a decision with
a specified response latency. To do so, we determine when the random walk crossed a
response boundary by finding the first value that is beyond one of the boundaries using
which(abs(evidence[i, ])>criterion)[1]. We assign that value to the variable
p, which in turn is recorded as the ith observation in latencies. By evaluating the sign
of the evidence where the random walk crossed a boundary (sign(evidence[i,p]))
we can keep track of whether the response was associated with the top boundary (+1) or
the bottom boundary (−1). (In theory, with a small value of sdrw and a wide boundary
separation, the model may not cross a boundary during the time cycles we observe. We
ignore that unlikely possibility here.)

To summarize, by the time R has completed processing the code snippet in
Listing 2.1, we have generated all the simulation data that we need to examine the
behavior of the model.

We begin by plotting a few representative random walks, using the next few lines of
code in the script that are shown in Listing 2.2. Note that although those lines are shown
in a separate listing here, they are part of the same program and use the same variables
that were introduced in Listing 2.1.

18 # p l o t up t o 5 random-walk p a t h s
19 tbpn <− min (nreps , 5 )
20 p l o t ( 1 : max (latencies [ 1 :tbpn ] ) +10 ,type=” n ” ,las=1 ,
21 ylim=c(−criterion− .5 ,criterion+ . 5 ) ,
22 ylab=” Evidence ” ,xlab=” D e c i s i o n t ime ” )
23 f o r (i in c ( 1 :tbpn ) ) {
24 l i n e s (evidence [i , 1 : ( latencies [i] −1) ] )
25 }
26 a b l i n e (h=c (criterion,−criterion ) ,lty=” dashed ” )

Listing 2.2 Plot a few random-walk paths

Running these additional lines of R code will produce a graph that looks much like
the top panel of Figure 2.1. It will not look exactly the same, for two reasons: First,
every time you run the program it will generate a different set of five paths because
the random evidence samples will differ every time. Second, we spent a bit more
time (and lines of code) to make Figure 2.1 look sufficiently attractive for this book.
We skipped over the nice formatting in Listing 2.2. Although most of the code in
Listing 2.2 should be self-explanatory for anyone with basic R skills, we highlight
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30 From Words to Models

Line 24: The lines statement plots one row (the ith row) of the evidence matrix.
Note that it only plots the random walk to the point just before it crosses the boundary,
which is indexed by (latencies[i]−1). We do not plot anything beyond that point,
because a decision has then been reached and this particular trial comes to an end.1

In addition to those illustrative random walks, we should also summarize the simula-
tion results at a statistical level, using all the available information. This is done by the
next portion of code that is shown in Listing 2.3. The code produces two histograms of
the response time distributions that are predicted by the random-walk model – one for
the “top” responses and one for the “bottom” responses (named after the boundary that
they crossed). In the line-orientation task discussed earlier, those responses correspond
to “left” and “right” responses, respectively.

27 # p l o t h i s t o g r a m s of l a t e n c i e s
28 p a r (mfrow=c ( 2 , 1 ) )
29 toprt <− latencies [responses>0]
30 topprop <− l e n g t h (toprt ) /nreps
31 h i s t (toprt , c o l =” g ray ” ,
32 xlab=” D e c i s i o n t ime ” , xlim=c ( 0 , max (latencies ) ) ,
33 main= p a s t e ( ” Top r e s p o n s e s ( ” , a s . numer ic (topprop ) ,
34 ” ) m=” , a s . c h a r a c t e r ( s i g n i f ( mean (toprt ) , 4 ) ) ,
35 sep=” ” ) ,las=1)
36 botrt <− latencies [responses<0]
37 botprop <− l e n g t h (botrt ) /nreps
38 h i s t (botrt , c o l =” g ray ” ,
39 xlab=” D e c i s i o n t ime ” ,xlim=c ( 0 , max (latencies ) ) ,
40 main= p a s t e ( ” Bottom r e s p o n s e s ←↩

( ” , a s . numer ic (botprop ) ,
41 ” ) m=” , a s . c h a r a c t e r ( s i g n i f ( mean (botrt ) , 4 ) ) ,

Listing 2.3 Plot distribution of response latencies from random-walk

Figure 2.2 shows histograms that were produced by the program snippet in
Listing 2.3. If you run that snippet in R, you should get a figure that looks virtually
identical to ours. It will not be exactly identical because your random samples will
differ slightly from ours, so the summary statistics will not match exactly. Nonetheless,
you should find that responses are split about 50–50 between the two types, and that the
average response time, as well as the shape of the distribution, should be roughly equal
for both response types.

The figure confirms our intuition from the outset: If the stimulus is non-informative,
both responses should be equally likely and take equally long. We are now poised to test
the intuitive prediction that we asked you to make before we presented the model.

1 In reality, we would not expect people to keep sampling evidence once a decision has been made. The
reason we drew nsamples observations for each random walk, most of which turn out to be superfluous
because a decision is reached much sooner, was for computational convenience. It is quicker and easier in
R to generate 2,000 random samples than it is to draw one sample at a time, add it to the sum of evidence
thus far, and then decide whether to stop sampling because the evidence exceeds a response boundary.
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Figure 2.2 Predicted decision-time distributions from the simple random-walk model when the
stimulus is non-informative. The top panel shows the distribution of responses that crossed the
top boundary (representing a “left” response in the line-orientation task), and the bottom panel
shows the distribution of responses that crossed the opposite boundary. The heading of each
panel identifies the proportion of each type of response and the associated mean decision time
consisting of the number of samples that, on average, had to be considered before the random
walk crossed the decision boundary.

2.2.3 Intuition vs. Computation: Exploring the Predictions of a Random Walk

We asked you to predict what would happen to the response times for the less likely
responses (“right”) as drift rate (favoring “left” responses) increases. We suspect that
you predicted that the decision time would be slower for the less likely response.
Surely, the upward drift must mean that it will take longer for a random walk to reach
the bottom boundary, like a person struggling against a river current? Or perhaps you
pictured “rays” emanating from the starting point (at 0 on the ordinate) representing
some reasonable range of average trends, and imagined this set of rays to rotate counter-
clockwise when drift is introduced, thereby producing slower responses when the lower
boundary is accidentally crossed (Farrell and Lewandowsky, 2010).

If those were your intuitions, they are incorrect. In fact, the mean response times for
both response types are identical, irrespective of drift rate. Figure 2.3 shows another pair
of histograms that are observed when the drift rate is positive (0.03), thereby favoring
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Figure 2.3 Predicted decision-time distributions from the simple random-walk model with a
positive drift rate (set to 0.03 for this example). The top panel shows the distribution of
responses that crossed the top boundary (representing a “left” response in the line-orientation
task), and the bottom panel shows the distribution of responses that crossed the opposite
boundary. The heading of each panel identifies the proportion of each type of response and the
associated mean decision time consisting of the number of samples that, on average, had to be
considered before the random walk crossed the decision boundary.

the top (“left”) response class. Even though the proportion of responses has shifted
dramatically, such that around 90% are now “left” responses, the mean latencies remain
indistinguishable. This property of the random-walk model has been known for decades
(Stone, 1960). By the way, to reproduce Figure 2.3 all you have to do is to rerun the
program with the drift rate reset to 0.03 in Line 5 in Listing 2.1. You may wish to explore
a range of different drift rates to explore the behavior of the model. For example, you
may wish to explore negative drift rates, which correspond to presentation of a stimulus
that favors the bottom (“right”) response class.2

This may seem a little strange at first glance. Surely that swimmer would have a hard
time reaching the bottom against the current that is pushing her toward the top? The
swimmer analogy, however, misses out the important detail that the only systematic
pressure in the model is the drift. This is quite unlike the hypothetical swimmer, who by

2 If you crank up the absolute magnitude of the drift rate too high, the program will crash when it tries to plot
a histogram of non-existent responses for the bottom boundary. As an exercise, write a few lines of code to
prevent that and print an error message instead. We skipped that to conserve space.
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2.2 Building a Simulation 33

definition is applying her own “counter-drift” against the current. The implication of this
is that paths that hit the bottom boundary do so only by the happenstance of collecting
a series of samples that nudge the path against the drift. If there were additional time,
then this would merely give the path more opportunity to be bumped toward the top
boundary by the drift. It follows that the only errors the model can produce are those
that occur as quickly as a correct response. The behavior of this basic random-walk
model is not at all obvious from its description. This example is a good illustration of
the risks associated with relying on intuition to presage the behavior of models. We are
still left with a conundrum, however, which involves the fact that people’s actual error
latencies are rarely equal to those of correct responses.

2.2.4 Trial-to-Trial Variability in the Random-Walk Model

The empirical relationship between error latencies and the speed of correct responses is
variable. Often, errors are faster than correct responses, but the reverse pattern also arises
quite frequently. Indeed, even the same subject in the same experiment may exhibit both
fast and slow errors (Ratcliff et al., 1999). As a first approximation, fast errors occur
when the subject is under time pressure and discriminability is high, whereas errors are
slow when the task is more difficult and time pressure is relaxed. That is, when you need
to decide whether a traffic light is red or green, the few errors you commit will likely
be fast. When you need to differentiate between a braeburn and a cortland apple, by
contrast, you may commit numerous errors and they will tend to be slow (Luce, 1986).

It turns out that both of those types of error latencies can be explained by sequential-
sampling models (Ratcliff and Rouder, 1998).3 The key to this success turns out to
be trial-to-trial variability. This trial-to-trial variability differs from the noise (i.e., vari-
ability) in the sequential sampling and accumulation process contained in the model in
Listing 2.1 (see sdrw in Line 13 in that earlier listing). The variability in that model was
limited to the noise in the sampling process, and it introduced “jitter” in the paths to the
decision boundary. (You may wish to take a moment to see what happens to the random
walks when sdrw is set to zero in Listing 2.1.)

Trial-to-trial variability, by contrast, refers to changes in the values of parameters
between different simulated trials. This variability is based on the plausible assump-
tion that the physical and psychological circumstances in an experiment do not remain
invariant for the entire session: Stimuli are encoded more or less well on a given trial,
people may pay more or less attention, or they may variably jump the gun and start
the decision process before the stimulus is actually presented. There are two parameters
whose variability across trials has been considered and found to have powerful impact
on the model’s prediction: Variability in the starting value of the random walk, and
variability in the drift rate (e.g., Ratcliff and Rouder, 1998; Rouder, 1996).

Thus far, all random walks in our model have originated at 0 on the ordinate (see
Figure 2.1). This reflects the assumption that there is no evidence available to the subject

3 For now, we use the term “sequential-sampling models” to refer to a broad class of models. A more nuanced
differentiation between the models is provided in Chapter 14.
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34 From Words to Models

before the stimulus is presented, and that sampling commences from a completely
neutral state. However, this assumption may be naı̈ve. What if people jump the gun and
sample “evidence” before the stimulus appears (Laming, 1979)? This could be expected
to happen quite frequently when people must respond quickly, in which case the starting
point of the random walk—defined as the point at which actual evidence in the form of
the stimulus becomes available—would randomly differ from 0. Sometimes the (non-
existent) evidence that is being sampled mimics a bunch of lines that slant to the left,
sometimes a bunch of lines that slant to the right – in the same way that when people
stare at white noise on a TV screen they can detect all sorts of things (Gosselin and
Schyns, 2003). This can be easily instantiated in the model by presuming that the starting
point is 0 on average, but with trial-to-trial deviations around that mean.

Likewise, our assumption thus far that the drift rate is identical across trials may be
somewhat naı̈ve as it presumes that the strength with which the stimulus is encoded is
identical on every single trial. If we relax that assumption and let drift rate vary slightly
between trials, then we can accommodate variations in encoding strength and other
factors that may differ between trials.

The next version of the random-walk model, shown in Listing 2.4, permits the intro-
duction of variability in both parameters. To introduce this variability, all that needs
changing are the two values in the vector t2tsd in Line 8. The first value determines
trial-to-trial variability in the starting value, and the second one introduces variability in
the drift rate.

1 # random-walk model wi th u n e q u a l l a t e n c i e s between ←↩
r e s p o n s e s c l a s s e s

2 nreps <− 1000
3 nsamples <− 2000
4

5 drift <− 0 . 0 3 # n o n i n f o r m a t i v e s t i m u l u s
6 sdrw <− 0 . 3
7 criterion <− 3
8 t2tsd <− c ( 0 . 0 , 0 . 0 2 5 )
9

10 latencies <− r e p ( 0 ,nreps )
11 responses <− r e p ( 0 ,nreps )
12 evidence <− m a t r i x ( 0 , nreps , nsamples+1)
13 f o r (i in c ( 1 :nreps ) ) {
14 sp <− rnorm ( 1 , 0 ,t2tsd [ 1 ] )
15 dr <− rnorm ( 1 ,drift ,t2tsd [ 2 ] )
16 evidence [i , ] <− ←↩

cumsum ( c (sp , rnorm (nsamples ,dr ,sdrw ) ) )
17 p <− which ( abs (evidence [i , ] )>criterion ) [ 1 ]
18 responses [i ] <− s i g n (evidence [i ,p ] )
19 latencies [i ] <− p
20 }

Listing 2.4 A random-walk model with trial-to-trial variability

So, if we first want to examine the effects of variability in the starting point, we
might use t2tsd <−c(0.8,0.0) in Line 8. If we then consider Line 14, we find that the
value 0.8 translates into the standard deviation of a single sample drawn from a normal
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Figure 2.4 Predicted decision-time distributions from the modified random-walk model with a
positive drift rate (set to 0.035 for this example) and trial-to-trial variability in the starting point
(set to 0.8). The top panel shows the distribution of responses that crossed the top boundary
(representing a “left” response in the line-orientation task), and the bottom panel shows the
distribution of responses that crossed the opposite boundary. The heading of each panel identifies
the proportion of each type of response and the associated mean decision time, consisting of the
number of samples that, on average, had to be considered before the random walk crossed the
decision boundary.

distribution with mean zero. (If you do not follow this immediately, typing “?rnorm” at
the command line will clear it up.) This value, assigned to the variable sp, is prepended
to the random walk in Line 16 instead of the usual 0.

The implications of this variability are profound, as revealed by the histograms in
Figure 2.4. The vast majority of responses (90%) crosses the top boundary. Given the
positive drift rate, those are correct responses, whereas the minority of responses that
crossed the bottom boundary are errors. Unlike before (Figure 2.3), the errors are much
faster than the correct responses.

It is easy to ascertain why errors are now faster than correct responses. Given the
strong drift rate, most random walks will tend toward the upper boundary. Indeed, it
requires an unlucky coincidence for any random walk to cross the lower boundary. The
opportunity for crossing this boundary is enhanced if the starting point, by chance, is
below the midpoint (i.e., < 0). Thus, when errors arise, they are likely associated with
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Figure 2.5 Predicted decision-time distributions from the modified random-walk model with a
positive drift rate (set to 0.03 for this example) and trial-to-trial variability in the drift rate
(set to 0.025). The top panel shows the distribution of responses that crossed the top boundary
(representing a “left” response in the line-orientation task), and the bottom panel shows the
distribution of responses that crossed the opposite boundary. The heading of each panel identifies
the proportion of each type of response and the associated mean decision time, consisting of the
number of samples that, on average, had to be considered before the random walk crossed the
decision boundary.

a starting point close to the incorrect boundary and hence they are quick. Of course,
there is a symmetrical set of starting points above the midpoint that also lead to quick
responses, but those fast responses constitute a much smaller proportion of correct
responses, compared to their sizeable contribution to errors. (It follows that latencies
should be equal for both response types when drift rate is zero; you can easily ascertain
that by running the program in Listing 2.4 with the appropriate setting of drift.)

Now consider what happens when variability is instead introduced into the drift rate,
by using t2tsd <−c(0.0,0.025) in Line 8. In that case, a small amount of noise is added
to the drift rate on each trial in the statement in Line 15, which in turn affects the
mean of all the random samples drawn for the evidence accumulation for that trial in
Line 16. The results are shown in Figure 2.5. This time the errors are slower than the
correct responses, even though their proportion has changed little from the preceding
simulation in Figure 2.4.
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To understand why drift-rate variability yields slow errors, we need to realize that drift
rate affects both latency and the relative proportions of the two response types. Suppose
we have one drift rate, call that d1, which yields a proportion correct of 0.8 and, for
the sake of the argument, average latencies of 600 ms. (If you are wondering whether
the latencies differ for errors and correct responses, quickly re-read the preceding few
pages.) Now consider another drift rate d2, which yields proportion correct .95 with a
mean latency of 400 ms. Finally, if we now suppose that d1 and d2 are (the only) two
samples from a drift rate with trial-to-trial variability, then we can derive the latency
across all trials (presuming there is an equal number with each drift rate) by computing
the probability-weighted average across drift rates. For errors, this will yield (0.05 ×
400 + 0.20 × 600)/0.25 = 560 ms. For correct responses, by contrast, this will yield
(0.95 × 400 + 0.80 × 600)/1.75 = 491 ms. (The weighted average is the sum of the
weighted observations divided by the sum of the weights.) It is easy to generalize from
here to the case where the drift rate is randomly sampled on each trial. Errors will
be slower than correct responses because drift rates that lead to faster responses will
preferentially yield correct responses rather than errors and vice versa.

Let’s put all this together: We have modified the model to include variability in
starting point and drift rate, and we can now produce fast as well as slow errors (relative
to the latency of correct responses). Given that both types of errors can be observed
empirically – and sometimes in the same sequence of trials by the same participants
(e.g., Ratcliff and Rouder, 1998) – this clearly enhances the model’s realism and power.
One important lesson to draw from this discussion is how quite small design decisions
can have considerable consequences for the model’s behavior. We next expand on this
message by placing our random- walk model into a broader context.

2.2.5 A Family of Possible Sequential-Sampling Models

The random-walk model just discussed is attractive in its simplicity and has contributed
to research for several decades (e.g., Ashby, 1983; Stone, 1960). However, it is only
one member of a large family of sequential-sampling models. Figure 2.6, taken from
Ratcliff et al. (2016), presents an overview of those models. It can be seen that the
principal differentiating feature of the random-walk model is its use of discrete time:
that is, the sampling process takes place in distinct steps and the predicted latency is the
number of such steps taken to cross a decision boundary.

We will revisit some of the other models in Chapter 14. For now, the important
message is that the decisions we already made about the random-walk model (in other
words, the inclusion of trial-to-trial variability) represent just a small subset of other
design decisions that we could have made. For example, we could have decided to
consider time in a continuous manner, or we could have decided to accumulate the
evidence for one decision or the other in separate accumulators. As we will see through-
out the remainder of this book, these decisions can have quite striking consequences
for the behavior of the model, and it can be a challenging but also rewarding exercise
to differentiate between those models by comparing their abilities to handle diagnostic
data sets.
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Figure 2.6 Overview of the family of sequential-sampling models. Figure reprinted with
permission from Ratcliff et al. (2016). See text for details.

2.3 The Basic Toolkit

Thus far, we have presented the random-walk model at a relatively abstract level,
without identifying or labeling the conceptual role of its components. We now
provide this basic toolkit which will set the stage for our in-depth exploration in
future chapters.

2.3.1 Parameters

Let us briefly reconsider Listing 2.1, which set up some of the variables that governed
the behavior of our simulation (e.g., drift, sdrw, criterion). Those variables are
called parameters. What is the role of parameters? Parameters can be understood as
“tuning knobs” that fine-tune the behavior of a model once its architecture (i.e., basic
principles) has been specified. A good analogy is your car radio, which has “knobs”
(or their high-tech digital equivalent) that determine the volume and the station; those
knobs determine the behavior of your radio without changing its architecture.

In our random-walk model, drift was one important parameter. Varying its value
affects the overall performance of the model; as drift increases, the model’s ability to
differentiate one response from another increases. In the extreme case, when drift is
larger than approximately, 0.05, the model will exclusively favor one response over the
other, corresponding to error-free performance in the line-orientation task that we used
as context to present the model.

Changing the drift rate does not change the architecture of our simulation, but it
certainly changes its behavior. Usually, models involve more than a single parameter.
It is helpful to introduce some notation to refer to the parameters of a model: for the
remainder of the book, we will use θ (theta) to denote the vector of all parameter values
of a model.
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2.3 The Basic Toolkit 39

Types of Parameters
If parameters are tuning knobs, how are their values set? How do you tune your car
radio to a new station? Exactly, you adjust the frequency knob until the hiss has been
replaced by Moz4 or Mozart. Likewise, there is a class of parameters in cognitive models
that are adjusted until the predictions are in line with the data to the extent possible.
Those parameters are known as free parameters. In our preceding simulations, the decay
rate and its variability were free parameters. The process by which the parameters are
adjusted is known as parameter-estimation or, sometimes, model-fitting. The resulting
estimates are known as the “best-fitting” parameter values.

Free parameters are usually estimated from the data that the model seeks to explain.
In Chapter 1, we proposed that the salary of Australian members of parliament can be
summarized by a single parameter, namely the mean. We estimated that parameter by
simply computing the average of the data. Things are a little more complicated if we fit
a regression model to some bivariate data, in which case we estimate two parameters –
slope and intercept. And things get more complicated still for psychological process
models; sufficiently complicated, in fact, for us to devote the next two chapters to
this issue.

Because the predictions of the model depend on its specific parameter values, a fair
assessment of the model’s adequacy requires that we give it the “best shot” to account for
the data. For that reason, we estimate the free parameters from the data, by finding those
values that maximally align the model’s predictions with the data. Those parameter
estimates often (though not necessarily) vary between different datasets to which the
model is applied.

Generally, as we have seen in the previous section, modelers seek to limit the number
of free parameters because the larger their number, the greater the model’s flexibility –
and as we discussed in some detail in Chapter 1, we want to place bounds on that
flexibility. That said, we also want our models to be powerful and to accommodate
many different data sets: it follows that we must satisfy a delicate trade-off between
flexibility and testability in which free parameters play a crucial role. This trade-off is
examined in detail in Chapter 10.

There is another class of parameters, known as fixed, that are not estimated from the
data and hence are invariant across datasets. In our simulations, the standard deviation
or “noise” in the sampling process (variable sdrw) was a fixed parameter. The role
of fixed parameters is primarily to “get the model off the ground” by providing some
meaningful values for its components where necessary. In the radio analogy, the wattage
of the speaker and its resistance are fixed parameters: Both can in principle be changed,
but equally, keeping them constant does not prevent your radio from receiving a variety
of stations at a volume of your choice. Although parsimony dictates that models should
have few fixed parameters, modelers are less concerned about their number than they
are about minimizing the number of free parameters.

4 Steven Patrick Morrissey.
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Experimental Parameters
(fixed and free)method

People Model

Data Predic�ons

Figure 2.7 The basic idea: We seek to connect model predictions to the data from our
experiment(s). This process involves the observables in the gray area at the bottom of the figure.
The area at the top shows the origin of data and predictions, and the auxiliary role of the model
parameters.

2.3.2 Connecting Model and Data

We have covered much ground in the first two chapters. We have explained the basic
tools and concepts involved in modeling, and we have provided an illustrative example
of what is involved in cognitive model construction. Let us now step back for a moment
and take another look at the global picture: We know that the basic aim of modeling is to
connect the model’s predictions with our data; this idea is illustrated in Figure 2.7, which
also shows the origin and the variables that determine the data and the predictions.

We know from Chapter 1 (in particular Figure 1.9 and the discussion surrounding it in
Section 1.3) that we want the connection between predictions and data to be taut; that is,
we want the data to be precise and the possible predictions of the model to be confined
to a subset of all possible outcomes.

The next chapter begins to delve into those issues by introducing the principles of
parameter estimation.

2.4 In Vivo

From Words to Models: Getting to Know Your Theory (Or Someone Else’s)

Klaus Oberauer
(University of Zurich)

Most theories in cognitive psychology are formulated as a set of verbal statements.
These theories often lack the precision necessary to derive unambiguous predictions
from them. One major strength of computational models is that we can use them to
derive unambiguous predictions by running the model. Therefore, it is often desirable to
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translate a verbal theory into a computational model. Doing that also helps understand-
ing the original theory.

Take, for instance, a simple and comparatively clear verbal theory of working
memory, the time-based resource-sharing (TBRS) theory (Barrouillet et al., 2004). The
theory has three basic assumptions: (1) Representations of stimuli encoded into working
memory decay over time; (2) representations can be refreshed, one by one, by paying
attention to them, thereby counteracting decay; and (3) refreshing depends on an
attentional bottleneck that can do only one thing at a time.

It follows that, when attention is engaged in a secondary task during memory main-
tenance, it cannot at the same time refresh memory representations. In that case, atten-
tion is assumed to rapidly switch between refreshing and working on the secondary
task. With these assumptions TBRS explains an important finding: When an attention-
demanding secondary task must be carried out during maintenance of a memory list,
memory becomes worse when the cognitive load of the secondary task is increased
(Barrouillet et al., 2004). Cognitive load is defined as the proportion of time dur-
ing which the secondary task engages the attentional bottleneck. As cognitive load is
increased, a smaller proportion of time can be devoted to refreshing, leaving a larger
proportion of time during which memory representations just decay. When they have
decayed too much, they can no longer be recovered, and memory accuracy suffers. The
story sounds clear enough – you can perhaps even see decay happening before your
inner eye when you mentally simulate the processes described here. You might think of
a juggler frantically throwing balls up into the air one by one, and in between swatting
away flies that pester her at a higher rate when “cognitive load” is high.

My colleagues and I translated TBRS into a computational model, called TBRS*
(Oberauer and Lewandowsky, 2011). On the way, we discovered how many details we
had to decide upon that the verbal TBRS theory could remain tacit about. Building a
computational model forces us to be explicit about the nuts and bolts of the cognitive
mechanisms that we talk about in our theories.

Let’s start with the basics: How are stimuli represented in working memory? In most
working-memory tasks, participants are asked to remember a list of items in their order
of presentation. To remember the items, we could simply activate their representations
to a maximum level at encoding, and then let that activation decay over time. But what
about the order? Computational models of serial-order memory propose two mecha-
nisms for maintaining order. One is to associate each list item to a representation of its
ordinal list position – for instance, the first word of a list is associated to “position 1,”
the second word to “position 2,” and so on (Burgess and Hitch, 1999). To recall the list,
position representations are activated one by one, and they activate the items associated
to them. The item with the highest activation is selected for recall. This is usually the
correct item, but errors occur due to overlap of position representations, and to noise.
The second option is a primacy gradient of activation (Page and Norris, 1998): During
list encoding, each successive item is activated a bit less than the preceding item. This
generates a primacy gradient of activation from the first to the last item. To recall the list
in forward order, the system selects the item with the highest activation – in the absence
of noise, always the first list item – recalls it, and suppresses its activation. Now the
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42 From Words to Models

second list item is the one with the highest activation, so it can be selected and recalled
next by the same mechanism, and so on.

We thought that the primacy gradient is an elegant solution to the problem of serial
order, so we started with it and combined it with decay and refreshing. We implemented
decay as an exponential decline of activation over time. Refreshing turned out to be more
complicated. Items are refreshed one by one, so we need to decide on a schedule for the
order in which they are refreshed. When people hold a list of words in working memory,
they often speak it to themselves, and they tend to do so in a cumulative forward order,
that is, they start with the first list word and continue until the last word encoded so
far, then start over, until they are interrupted by presentation of the next word (Tan and
Ward, 2008). We assumed that refreshing follows the same schedule: it starts refreshing
the first item, continues to the second, and so on.

How to implement refreshing in a model? To refresh an individual representation,
it has to be selected among the representations in working memory, just as items are
selected for output when it comes to recall. So let’s start refreshing the first item. We
select the item with the highest activation, give it an activation boost – and then what? To
move on to the second item, we would now have to suppress the first item, but that would
undo the boosting. If we don’t suppress it, the next step would inevitably select the
first item again, boost it even more, but the process could never refresh any subsequent
list item. What we learned from this computational exploration is that the primacy
gradient as a mechanism for maintaining serial order is incompatible with the idea of
cumulative refreshing or rehearsal. Therefore, we abandoned it and tried item-position
associations next.

When a list is represented by associations of items to positions, there is no need
for keeping representations of the items themselves activated. At test, position rep-
resentations are activated one by one, and the activation of each item is re-created
through its association to the currently activated position. Therefore, it makes no sense
to let item activation decay – we therefore had to let the strength of item-position
associations decay. Weaker associations result in weaker reactivation of items at recall.
We introduced a threshold on activation so that items can be recalled only when their
activation surpasses the threshold. Refreshing can now be implemented as retrieval of
an item – just as for overt recall – followed by strengthening of the retrieved item’s
association to the currently active position.

This model worked reasonably well. In particular, it accounted for the effect of cog-
nitive load on memory: At higher cognitive load there is less opportunity to counteract
decay by refreshing. This increases the chance that some associations become so weak
that they cannot reactivate the target item above threshold.

When we explored this model we made a surprising discovery: We omitted the thresh-
old, so that the model could always recall the item with the highest activation at test,
even if that activation was negligibly small. The model behavior did not change at all.
It still produced worse memory at higher cognitive load. We learned that our intuitive
understanding of decay in working memory – representations become weaker until they
fall below a threshold and become irrecoverable – had nothing to do with how TBRS*
produced forgetting. The reason why it sometimes failed to recall the correct item – and
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failed more often at higher cognitive load – was not that the item’s activation at test
was below threshold. Rather, when the model made an error, it recalled the wrong item
because that item’s activation at test surpassed the activation of the correct item. Recall
in TBRS* depends not on absolute but on relative strength of item activations at test.

Why does decay, which reduces absolute activation, lead to forgetting in a model
that is entirely driven by relative activation? The reason for forgetting in TBRS* is
that decay – and refreshing – affects some items more than others, thereby creating an
imbalance in their relative strengths. Items encoded earlier start to decay earlier. They
are also refreshed more, but the amount of boosting by refreshing does not perfectly
balance out the amount of decay each item receives over the time course of a memory
task, in particular when refreshing is often interrupted by a secondary task. Thereby,
the balance of relative strengths of item-position associations is disturbed, leading to
distortions of the competition between items at test. Hence, we discovered that we
had built a model that works, but it works for reasons very different from those we
anticipated when starting from the verbal theory.
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