
11 Bayesian Model Comparison Using
Bayes Factors

The previous chapter explored the issue of model complexity, and focused on the fact
that a model may give a good fit to a set of data simply by virtue of being more flexible.
We also discussed several methods by which we can correct for complexity to obtain an
unbiased measure of the fit of a model, in particular the AIC as a corrected estimator of
the distance between the data and the “true” model. We pick up on both of these themes
in this chapter, in which we discuss the Bayesian approach to model comparison, and
how the Bayesian approach naturally accounts for model complexity.

We begin by presenting the core component of Bayesian model comparison – the
marginal likelihood – and discuss how the relative fit of two models can be expressed
in terms of Bayes factors. We then survey several methods for calculating the marginal
likelihood, before discussing the particular role of the prior distributions when perform-
ing Bayesian model comparison.

11.1 Marginal Likelihoods and Bayes Factors

To understand Bayes factors, it is useful to first remind ourselves of Bayes theorem, as
it applies to Bayesian parameter estimation (Equation 6.6). For convenience, we restate
the theorem here:

P(θ |y)︸ ︷︷ ︸
posterior

= (P(y|θ)︸ ︷︷ ︸
likelihood

× P(θ))︸ ︷︷ ︸
prior

/ P(y)︸︷︷︸
evidence

. (11.1)

For much of our discussion thus far, we focussed on the proportional relationship
P(θ |y) ∝ P(y|θ)P(θ), and dropped P(y) as it can be treated as a normalising constant
(Equation 7.1). It turns out that P(y) – the marginal likelihood – plays a critical role in
Bayesian model comparison. Indeed, it is also called the evidence because it quantifies
the evidence the data y provide for the model.

To understand why, we need to remind ourselves that all of the components in
Equation 11.1 are conditional on a particular model M; that is, the equation should
really be presented as:

P(θ |y, M)︸ ︷︷ ︸
posterior

= (P(y|θ , M)︸ ︷︷ ︸
likelihood

× P(θ |M))︸ ︷︷ ︸
prior

/ P(y|M)︸ ︷︷ ︸
evidence

. (11.2)
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274 Bayesian Model Comparison Using Bayes Factors

Accordingly, the evidence P(y|M) tells us about the probability of obtaining data y under
model M, and thus how consistent the data are with the model.

It might not seem obvious how we can calculate P(y|M), but all the information
we need is already used in Equation 11.2. The evidence is obtained by calculating the
marginal likelihood of the data given the model:

p(y|M) =
∫

p(y|θ , M)p(θ |M)dθ . (11.3)

Effectively, what we are doing is considering how likely the data are for each point in the
parameter space, and then averaging the resulting values. In contrast to the maximized
likelihood, where we are interested in the best possible fit of a model, the marginal
likelihood calculates the average fit of the model. Note, however, that this average
is a weighted average, the weights being determined by the prior distribution on the
parameters, p(θ |M).

One appealing feature of the marginal likelihood is that it naturally accounts for
the complexity of the model, and formally instantiates the principle of parsimony, or
Ockham’s razor (Chapter 10; Jefferys and Berger, 1991; MacKay, 2003; Myung and
Pitt, 1997; Wagenmakers et al., 2010). Figure 11.1 shows how this is the case. The top
two panels in the figure plot out p(y|θ , M) as a function of θ and y for two different
models, a complex model (top left panel) and a simple model (top right panel). The
details of these models are not important, except that they both accept the same single
parameter, θ . The critical point is that the complex model has a free parameter, θ , and
that its predictions, y, change as a function of θ (the dark band in the top left panel runs
diagonally across the plot). The essential feature of the simple model is that it always
predicts a normal distribution centred on y = 0.5, regardless of the value of θ . The top
panels also show two hypothetical data points, represented by the horizontal lines. The
dark line represents one possible value for data from an experiment, and the dashed line
represents a different possible value.

The plot for the complex model (top left panel) shows that no matter what data, y, are
observed, by changing θ the model will be able to produce a density that is centred over
the data. By contrast, the simple model’s predictions (top right panel) are invariant to
the parameter θ , such that it always predicts that y usually be in the range 0.4–0.6, with
little support outside this range.1

Now, imagine that in an experiment we observe that y = 0.5; this is depicted by
the solid line in the top two panels. The bottom left panel plots out p(y|θ , M) for
y = 0.5 (solid line); in other words, it plots out the likelihood function L(θ |y, M).
A likelihood function is also plotted out for the simple model in the bottom right panel
for y = 0.5. Assuming for the moment that we have a uniform prior on p(θ) over the
interval θ = [0, 1] in both models, calculation of the marginal likelihood via Equation
11.3 involves averaging the likelihood function for each model. It should be obvious that
this average will be higher for the simple model – where p(y|θ , M) is uniformly equal

1 Note that this is an artificial example to aid exposition; in practice, a parameter that has no effect in a model
is unidentifiable. Chapter 10 discusses identifiability in more detail.
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11.1 Marginal Likelihoods and Bayes Factors 275
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Figure 11.1 Illustration of how the marginal likelihood can implement the principle of parsimony.
The top two panels plot the likelihood p(y|θ , M) (the darkness of the shading indicates higher
probability density) for different values of y and θ , for a complex model (Mcomplex, left panel)
and a simple model (Msimple, right panel). The two lines depict results of two different
experiments; one where y = 0.5, and the other where y = 0.8. The bottom two panels plot out
p(y|θ , M) as a function of θ , given y = 0.5 (solid line) or y = 0.8 (dashed line). The average of
p(y|θ , M) is greater for the simple model (vs. the complex model) when y = 0.5; this is a
situation where the data match up to the predictions of the simpler model, and although the more
complex model can fit the data, it is punished by its ability to fit other possible outcomes as well
(top left panel). When y = 0.8, only the complex model is able to provide a decent fit of the data,
with the simple model returning a uniformly poor fit to the data. In this second case, the average
of p(y|θ , M) is greater for the complex model, meaning that the extra complexity in the complex
model is warranted.

to 4 – than in the complex model, where p(y|θ , M) peaks at 4 but falls close to 0 as θ
moves away from the value θ = 0.5.

The dashed lines in Figure 11.1 also show a different situation where y = 0.8.
Although we have a preference for the simpler model given its simplicity, it is also
clear in this instance that the model predicts that the observed data are highly unlikely.
Indeed, plotting out p(y|θ , M) for the simpler model when y = 0.8 (dashed line, bottom
right panel), shows that the model uniformly returns near-zero values, and the average
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276 Bayesian Model Comparison Using Bayes Factors

likelihood will be very small. In contrast, the complex model again produces a peaked
likelihood function (dashed line, bottom left panel), similar to the one for y = 0.5,
but shifted along the x-axis. Accordingly, the average of the likelihood function for the
complex model will be greater than that for the simple model.

In summary, calculation of the marginal (i.e., average) likelihood automatically takes
complexity into account. Complex models will tend to produce different patterns of
data for different parameter values, so only a subset of parameter values will produce
predictions similar to any given set of data. Accordingly, when we average p(y|θ , M)
across the parameter space, the complex model will tend to return a lower average. If the
simple model produces predictions close to the data, it will tend to do this irrespective
of the parameter value, resulting in a larger average of p(y|θ , M). However, if the simple
model is incapable of giving a good fit to the data, its average will be small. This means
that the marginal likelihood does not simply punish complex models, but also rewards
models for a good fit.

Another factor determining the marginal likelihood is the prior p(θ |M). Recall
that the prior represents our knowledge or expectation for different values of θ (see
Chapter 6). In the example above we assumed a uniform prior on θ across the range
0 − 1 to make understanding conceptually easier. In practice, we will often have
more informative priors, and these act as weights in the weighed average described
in Equation 11.3. One consequence of Equation 11.3 is that the average will be more
heavily affected by those parameter values that we think are more likely a priori. This
means that a more complex model can also return a high marginal likelihood if our
priors turn out to heavily weight those parameter values that give the best fit to the data.

Together, these considerations show how Bayesian model comparison using marginal
likelihoods compromises between fit and parsimony. Myung and Pitt (1997) give further
discussion of how Bayesian model selection relates to issues such as generalizability that
were discussed in the previous chapter.

This leads to the question of how to use marginal likelihoods to compare models.
A single marginal likelihood value from a single model is not particularly useful. Is
p(y|M) = 0.17 big or small? It really depends on factors such as the nature of the data
(e.g., whether they are discrete or continuous, and their scale) and the size of the data
set (i.e., the number of data points). However, the marginal likelihoods can be used
to compare models on their account of the same data. Specifically, the Bayes factor
expresses the evidence in favor of one model over another by calculating the ratio of the
marginal likelihoods:

BFij = p(y|Mi)

p(y|Mj)
=
∫

p(y|θ , Mi)p(θ |Mi)dθ∫
p(y|θ , Mj)p(θ |Mj)dθ

. (11.4)

The subscripts to the Bayes factor, BFij denote the two models being compared, the
model i in the numerator of the Bayes factor ratio, and model j in the denominator.
Accordingly, BFij > 1 indicates that the data provide evidence for model i over model j,
while BFij < 1 provides evidence for model j. We use the more general terminology
i and j here because we might make pairwise comparisons between any number of
models. Often, for example, we might calculate BF10, the evidence for a more general
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11.2 Methods for Obtaining the Marginal Likelihood 277

model over a more restricted or null model. By convention, the null model has the
subscript 0. On top of that, we might also want to calculate BF12 to compare the relative
evidence favoring Model 1 over a different Model 2. Although Bayes factors express
the ratio between only two models, any possible pairwise comparisons within a set of
models can be made. (As an aside, note that although we have used the same θ in the
numerator and the denominator, the two models will usually have different parameters).

An important benefit of the Bayes factor is that it provides a continuous metric of the
evidence favoring one model over another. This means that we can use Bayes factors to
not only select a single model as the best model, but also to express the relative evidence
for all models. This also means that there are no arbitrary thresholds for “significance” as
exist in standard frequentist statistics (i.e., null hypothesis significance testing; see Kass
and Raftery, 1995; Wagenmakers, 2007; Rouder et al., 2009; Gallistel, 2009 and Dienes,
2011 for more discussion of the difference between frequentist and Bayesian statistical
frameworks). Nonetheless, some authors have provided heuristics for interpreting Bayes
Factors. For example, Jeffreys (1961) suggested 1 ≤ BF < 3.2 is worth no more than
a bare mention, 3.2 ≤ BF < 10 offers substantial evidence, 10 ≤ BF < 100 strong
evidence, and BF ≥ 100 is decisive. These values refer to cases where the model with
greater evidence is in the numerator; if the better-fitting model is in the denominator
of the Bayes factor, then the thresholds are given by the reciprocals of the value just
provided. In either case, the exact values are not critical, and authors other than Jeffreys
(1961) have suggested other heuristics with different breakpoints (Kass and Raftery,
1995; Raftery, 1995; Vandekerckhove et al., 2015). It is important to note that these are
simply heuristics; it is not the case that if a Bayes factor creeps up from 3.15 to 3.25 that
the evidence suddenly becomes “substantial.” Rather, keep in mind that the Bayes factor
is fully continuous, and treat these heuristics as very rough and ready aids to interpreting
Bayes factors. One application where these heuristics are more useful is in sequential
testing, where models are fit to the data as they are collected (in batches of, e.g., 10
participants) until the evidence favoring one model over another passes a set threshold
(e.g., BF = 10; Rouder, 2014; Wagenmakers, 2007).

11.2 Methods for Obtaining the Marginal Likelihood

Calculating the integral in Equation 11.3 presents the same problem that we faced
in earlier chapters when calculating posteriors on parameters: there is often no ana-
lytic solution, and so we need some other way of approximating the integrals. There
are a number of methods available for estimating Bayes factors by approximating the
marginal likelihood. We will review those most commonly used in the cognitive sciences
and related disciplines. Note that there exist a number of other techniques that we do
not have room to discuss here, including bridge sampling (Meng and Wong, 1996), path
sampling (Gelman and Meng, 1998), Approximate Bayesian Computation (Grelaud
et al., 2009), and others (Gelfand and Smith, 1990; Chib, 1995). Note also that we
will focus on cases where participants are fit independently; a later section will take up
Bayes Factors for hierarchical models.
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278 Bayesian Model Comparison Using Bayes Factors

11.2.1 Numerical Integration

One obvious method to calculate the marginal likelihood is to numerically integrate∫
p(y|θ , M)p(θ |M)dθ . Numerical integration methods generally work by evaluating a

function f (x) at a relatively small number of x values, and estimating the integral based
on these evaluations. A common technique taught in high school is trapezoidal integra-
tion, in which the function is evaluated at a fixed set of points, the points are linearly
interpolated, and the integral for the interval between two adjacent points a and b is
calculated by multiplying the distance between the points by the average of f (a) and
f (b). Gaussian quadrature methods approximate f with a polynomial function (rather
than drawing lines between the points) so that the integral is relatively straightforward to
calculate. More advanced adaptive quadrature methods use a basic quadrature method to
calculate the integrals between an interval a and b; and then do the same after subdivid-
ing the interval between a and b into a number of intervals (and applying the quadrature
integration to each interval separately). If the estimated integral from the undivided
and divided interval is similar, the undivided integral is determined to provide a good
approximation. If the result from the undivided interval does not agree with that from
the divided integral, further subdivision takes place in a recursive manner.

R provides a function integrate for one-dimensional integration, and packages
such as cubature can numerically integrate multivariate functions. As a general rule,
numerical integration is only useful for small dimensional problems, as the number of
required points to estimate increases roughly exponentially with the number of param-
eters. Kass and Raftery (1995) suggest nine parameters as a practical upper limit on the
number of parameters when integrating via adaptive quadrature.

To give an example of numerical integration, we revisit the exponential and power
models of forgetting discussed in Chapter 9. There we examined proportion recalled
in a memory experiment as a function of retention interval. Proportion recalled drops
as a function of retention interval, and this drop was fit using two different models: an
exponential function and a power function. Here, we directly address a question that was
alluded to in Chapter 9: which of the two models (power vs. exponential) gives a better
fit to the data? To answer this, we will obtain a Bayes factor relating the two models.
To make things simpler to understand, we are fitting the data from a single participant,
where those data were actually generated from the exponential model.

Listing 11.1 gives R code for the numerical integration. We specify retention
intervals in tlags and the number of items tested at each lag, and then simulate
data (nrecalled) from the exponential model using specified parameter values for a,
b, and alpha. We then load in the cubature library, which provides a function for
adaptive numerical integration. Following this, we define likelihood functions expL

and powL for the exponential and power models, respectively. Each function returns
the likelihood of the data y given the parameter vector theta and other details about
the experiment (tlags, n). The adaptIntegrate function is then used to calculate
the marginal likelihood for the exponential (expML) and power (powML) models. The
adaptIntegrate function takes as arguments the likelihood (expL or powL) and
lower and upper limits on the parameters; we also pass in supplementary information
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11.2 Methods for Obtaining the Marginal Likelihood 279

such as tlags and the data themselves. We then calculate the Bayes factor by taking
the ratio of the marginal likelihoods.

1 l i b r a r y (MASS )
2

3 tlags <− c ( 0 , 1 , 5 , 10 , 20 , 50)
4 nlags <− l e n g t h (tlags )
5

6 nitems <− 40
7

8 nrecalled <− r e p ( 0 ,nlags )
9

10 a <− 0 . 1
11 b <− . 9 5
12 alpha <− . 2
13

14 # s i m u l a t e d a t a
15 f o r (j in 1 :nlags ) {
16 p <− a + (1−a ) ∗ b ∗ exp(−alpha∗tlags [j ] )
17 nrecalled [j ] <− rbinom ( 1 ,nitems ,p )
18 }
19

20 l i b r a r y (cubature )
21

22 expL <− f u n c t i o n (theta ,tlags ,y ,n ) {
23 a <− theta [ 1 ]
24 b <− theta [ 2 ]
25 alpha <− theta [ 3 ]
26 p <− dbinom (y ,n ,a+(1−a ) ∗b∗exp(−alpha∗tlags ) )
27 r e t u r n ( prod (p ) )
28 }
29

30 powL <− f u n c t i o n (theta ,tlags ,y ,n ) {
31 a <− theta [ 1 ]
32 b <− theta [ 2 ]
33 b e t a <− theta [ 3 ]
34 p <− dbinom (y ,n ,a+(1−a ) ∗b∗ ( (tlags+1) ˆ(− b e t a ) ) )
35 r e t u r n ( prod (p ) )
36 }
37

38 expML <− adaptIntegrate (expL , c ( 0 , 0 , 0 ) , c ( 0 . 2 , 1 , 1 ) ,
39 tlags=tlags ,y=nrecalled ,n=nitems )
40 powML <− adaptIntegrate (powL , c ( 0 , 0 , 0 ) , c ( 0 . 2 , 1 , 1 ) ,
41 tlags=tlags ,y=nrecalled ,n=nitems )
42 expML$integral /powML$integral

Listing 11.1 R code to calculate marginal likelihoods using numerical integration, for the
power and exponential models of forgetting

The data are randomly generated, and so the Bayes factor that is actually observed
will vary from run to run. Generally, the data are more probable under the exponential
model, which is not entirely surprising (but also not necessarily the case) given that the
exponential model was used to generate the data.
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280 Bayesian Model Comparison Using Bayes Factors

11.2.2 Simple Monte Carlo Integration and Importance Sampling

Numerical integration is only appropriate for small-dimensional problems. As the num-
ber of parameters increases, numerical integration will take longer. The methods that
are usually used to calculate marginal likelihoods do not attempt to perform evaluations
across the likelihood surface, but instead use a simpler approach of averaging across
samples.

A very simple but accurate method for obtaining the marginal likelihood is Monte
Carlo integration (e.g., Rubinstein, 1981). Specifically, we take N samples from the
prior distribution p(θ), and for each of those samples θi we calculate the probability of
the data given that sampled vector of parameter values, p(y|θi). The average,∑N

i=1 p(y|θi)

N
,

is then an estimate of the marginal likelihood. This calculates a weighted average
because those parameter values with a higher density under the prior are more likely to
be sampled, and so will carry greater weight in the average. This simple Monte Carlo
integration is guaranteed to converge to the true marginal likelihood as N approaches
infinity. One limitation of this brute force method is that it will be inefficient (i.e., N
will need to be very large to obtain a decent estimate of the marginal likelihood) if the
mass of the prior does not substantially overlap with the mass of the likelihood (e.g.,
McCulloch and Rossi, 1992). If most of the prior is located in a region of parameter
space far removed from the peak of the likelihood function, the informative area close
to the maximum likelihood will be underexplored. As a consequence, the estimates
of marginal likelihood will have high variability under these conditions. This means
that a very large number of samples will need to be drawn in order to obtain a good
approximation of the posterior distribution in the region of parameter space where the
likelihood is peaked.

A related method that solves this problem of underexploration is called importance
sampling. Rather than sampling directly from p(θ), we instead sample from a density
g that will oversample the important region: the region where the likelihood p(y|θ) is
concentrated. The importance sampling estimate of the marginal likelihood is given by:

Î = 1

N

N∑
i=1

p(y|θi)p(θi)

g(θi)
, (11.5)

where the N samples are generated according to θi ∼ g. Because we sample from g and
then divide through by g(θi), over many samples g will cancel out and we effectively
integrate p(y|θi)p(θi). Because g drops out, any density function can substitute for g as
long as we can generate samples from it and evaluate it at any of the possible samples θi.
In practice, importance sampling works well when g(θ) is concentrated in the likely
region of θ ; that is, where the posterior has the majority of its mass. Whatever the choice
of g, its main purpose is to push the sampler to sample the regions of parameter space
that we think are informative (i.e., have more area under the function we are trying to
integrate).
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11.2 Methods for Obtaining the Marginal Likelihood 281

Before we give an example of importance sampling, we should discuss a related
method. If we want a g(θ) that is concentrated in the region of the posterior, one
option is to use the posterior itself as g(θ). Doing so allows us to calculate the marginal
likelihood as: (

1

N

N∑
i=1

1

p(y|θi)

)−1

,

where the θi are samples from the posterior (e.g., Newton and Raftery, 1994; McCulloch
and Rossi, 1992). This is straightforward as we only need a specified likelihood function
p(y|θ) and samples from the posterior, the latter usually being obtained during Bayesian
parameter estimation anyway (see Chapter 8). This method effectively takes the har-
monic means of likelihoods, and is often referred to as the harmonic mean estimator.
(The harmonic mean is defined as the reciprocal of the arithmetic mean of reciprocals.)

Although it is straightforward, and therefore relatively popular, there are two limita-
tions of harmonic mean estimation of the marginal likelihood. One is that the variance
of the estimator can be infinite (Newton and Raftery, 1994), specifically when the prior
is less dispersed (i.e., has lower variance) than the likelihood (Wolpert and Schmidler,
2012). As a consequence, it is highly impractical to draw enough samples to guarantee
a stable estimate of the marginal likelihood (Wolpert and Schmidler, 2012). Conversely,
one issue with harmonic means estimation is that all the information about the prior is
carried by the samples from the posterior. If the prior is very dispersed with respect to
the likelihood, this means that the posterior will be dominated by the likelihood, and so
samples from the posterior will not be representative of samples from the prior.2

Amongst several suggested solutions to the problems with the harmonic mean estima-
tor (e.g., Raftery et al., 2007), one commonly used method is to use importance sampling
with a function g that approximates the posterior, but also has a heavier tail. Newton and
Raftery (1994) suggest using a mixture distribution γ p(θ)+(1−γ )p(θ |y). Alternatively,
we might simply use a mixture of the posterior with some dispersed distribution that is
expected to give a good coverage of the prior and posterior (e.g., a Beta(1,1) density for
parameters that are probabilities; Kary et al., 2015; Vandekerckhove et al., 2015). One
caution with this approach is that the posterior is usually not normalized; if it were, we
would know the normalizing constant and thus the marginal likelihood! Accordingly, we
must use a modified version of Equation 11.5 that effectively normalizes the posterior
(Equation 15 in Newton and Raftery, 1994), or approximate the posterior with a known
normalized density, preferably with a simple form (Vandekerckhove et al., 2015). We
use the second approach here.

Let us return to the basic signal detection example discussed in Chapter 8. There,
we estimated the parameters of the signal detection theory (SDT) model and the high-
threshold (1HT) theory. We will continue that comparison here by asking which model
is better supported by the data, by calculating a Bayes factor using importance sampling,

2 This second point was raised by R. Neal in published comments on Newton and Raftery (1994), and is given
further discussion in a blog post at https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-
the-likelihood-worst-monte-carlo-method-ever/. It is pretty clear Neal thinks it is the Worst. Method. Ever.
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282 Bayesian Model Comparison Using Bayes Factors

where the density g is a mixture distribution. The method is shown in Listing 11.2.
Having specified the parameter controlling the probability mixture in the importance
sampling distribution (gmix) and the number of samples (N), we calculate the marginal
likelihood of the SDT model. Over Lines 17 to 20 we specify the density and sampler for
the distribution that is mixed with the posterior in the importance sampling distribution;
here we just use the prior distribution. We then obtain samples from the posterior by
running a condensed version of Listing 8.4 (source("SDT.R")) that only draws sam-
ples from the posterior. That listing creates an object mcmcfin containing samples from
the posterior, and the next section of code (Lines 25 to Lines 28) then fits a Gaussian
to the samples of d and b respectively. Accordingly, rather than dealing with the pos-
terior directly, we are using a Gaussian density in its place in the importance sampling
function. This means that our importance sampling function for d (for example) is

g(d) = γNormal(d, 1, 1)+ (1 − γ )Normal(d, μ̂, σ̂ ),

where the first term is the prior distribution on d (weighted by γ—called gmix in
Listing 11.2) – and the second term is our approximation of the posterior (weighted
by 1−γ ). In Line 30 and the following line, we then draw N samples from the Gaussian
that approximates the posterior, and randomly overwrite values in the vectors d and B

(samples from the prior) with these samples from the approximate posterior according
to gmix. As a result, d and B are samples from the probability mixture of the prior and
the approximate posterior. We then apply Equation 11.5 in two steps: we first calculate
p(θi)/g(θi), and then multiply the resulting vector pp by the likelihoods p(y|θi). Taking
the mean of this value gives us the marginal likelihood for the SDT model, ml SDT.

1 l i b r a r y (MASS )
2

3 # C a l c u l a t e Bayes F a c t o r s f o r SDT model and 1HT model
4

5 h <− 60
6 f <− 11
7

8 sigtrials <− noistrials <− 100
9

10 gmix <− 0 . 2
11 N <− 20000
12

13 ##−−−−−− SDT
14

15 # s p e c i f y f u n c t i o n t o e n t e r i n t o i m p o r t a n c e s a m p l i ng ←↩
m i x t u r e

16 # h e r e we use t h e p r i o r d i s t r i b u t i o n s
17 d <− rnorm (N , mean =1 , sd =1)
18 B <− rnorm (N , mean =0 , sd =1)
19 d f <− f u n c t i o n (x ) dnorm (x , 1 , 1 )
20 dB <− f u n c t i o n (x ) dnorm (x , 0 , 1 )
21

22 # o b t a i n samples from p o s t e r i o r
23 s o u r c e ( ”SDT . R” )
24 mcmcs <− as . m a t r i x (mcmcfin )
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25 d mu <− mean (mcmcs [ , ” d ” ] )
26 d sd <− sd (mcmcs [ , ” d ” ] )
27 B mu <− mean (mcmcs [ , ” b ” ] )
28 B sd <− sd (mcmcs [ , ” b ” ] )
29

30 d pos <− rnorm (N , mean=d mu , sd=d sd )
31 B pos <− rnorm (N , mean=B mu , sd=B sd )
32

33 mask <− r u n i f (N )>gmix
34 d [mask ] <− d pos [mask ]
35 B [mask ] <− B pos [mask ]
36

37 pp <− dnorm (d , 1 , 1 ) ∗
38 dnorm (B , 0 , 1 ) /
39 ((1 −gmix ) ∗dnorm (d ,d mu ,d sd ) ∗dnorm (B ,B mu ,B sd ) + ←↩

gmix∗ df (d ) ∗dB (B ) )
40 L <− dbinom (h ,sigtrials , pnorm (d / 2−B ) ) ∗
41 dbinom (f ,noistrials , pnorm(−d / 2−B ) ) ∗pp
42 ml SDT <− mean (L )
43

44 # −−−−−−−−−1HT ( b e t a )
45

46 # s p e c i f y f u n c t i o n t o e n t e r i n t o i m p o r t a n c e s a m p l i ng ←↩
m i x t u r e wi th t h e p o s t e r i o r

47 # h e r e we use t h e p r i o r d i s t r i b u t i o n s
48 th1 <− r b e t a (N , 1 , 1 )
49 th2 <− r b e t a (N , 1 , 1 )
50 d1 <− f u n c t i o n (x ) d b e t a (x , 1 , 1 )
51 d2 <− f u n c t i o n (x ) d b e t a (x , 1 , 1 )
52

53 ## o b t a i n samples from p o s t e r i o r
54 s o u r c e ( ” 1HT . R” )
55 mcmcs <− as . m a t r i x (mcmcfin )
56

57 # o b t a i n b e t a p a r a m e t e r e s t i m a t e s u s i n g MLE
58 kk <− fitdistr (mcmcs [ , ” t h 1 ” ] , ” b e t a ” , ←↩

l i s t (shape1=5 ,shape2=5) )
59 th1 s1 <− kk$estimate [ 1 ]
60 th1 s2 <− kk$estimate [ 2 ]
61 kk <− fitdistr (mcmcs [ , ” t h 2 ” ] , ” b e t a ” , ←↩

l i s t (shape1=5 ,shape2=5) )
62 th2 s1 <− kk$estimate [ 1 ]
63 th2 s2 <− kk$estimate [ 2 ]
64

65 th1 pos <− r b e t a (N , th1 s1 ,th1 s2 )
66 th2 pos <− r b e t a (N , th2 s1 ,th2 s2 )
67

68 mask <− r u n i f (N )>gmix
69 th1 [mask ] <− th1 pos [mask ]
70 th2 [mask ] <− th2 pos [mask ]
71

72 pp <− d b e t a (th1 , 1 , 1 ) ∗
73 d b e t a (th2 , 1 , 1 ) /
74 ((1 −gmix ) ∗ d b e t a (th1 ,th1 s1 ,th1 s2 ) ∗ d b e t a (th2 ,th2 s1 ,th2 s2 ) ←↩

+ gmix∗d1 (th1 ) ∗d2 (th2 ) )
75
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76 L <− dbinom (h ,sigtrials ,th1+(1−th1 ) ∗th2 ) ∗
77 dbinom (f ,noistrials ,th2 ) ∗pp
78 ml HT <− mean (L )
79

80 #−−−What i s t h e Bayes F a c t o r ?
81 ml SDT /ml HT

Listing 11.2 Estimation of marginal likelihood for SDT and 1HT models using importance
sampling

The process for calculating the marginal likelihood for the 1HT model shown in the
remainder of the code is conceptually very similar, so we do not describe it here. Note
that we approximate the posterior for the 1HT parameters using Beta distributions, given
those parameters are bounded at 0 and 1. At the bottom of the code we calculate the
Bayes factor favoring the SDT model, and this is approximately 1.5. Accordingly, we
have little evidence favoring one model over the other. This should not come as a great
surprise; both models are capable of perfectly reproducing the hit and false alarm rates,
and so the Bayes factor will primarily reflect the relative flexibility of the two models
given the specification of the priors. Indeed, note that we have used the same priors that
were used in Chapter 8, and this Bayes Factor > 1 may simply reflect the slightly more
informative priors for the SDT model. The specification of priors is an essential issue
when interpreting Bayes factors, and we return to this topic later in the chapter.

11.2.3 The Savage-Dickey Ratio

Another method that relies primarily on samples from the posterior is the Savage-Dickey
ratio. This method of Bayes factor calculation was developed by Dickey and colleagues
(Dickey, 1971, 1976; Dickey et al., 1970) and was credited to Savage by those authors.
The Savage-Dickey method applies to cases where we wish to test a null model against
an alternative general model, much like the situation we encountered when performing
the likelihood ratio test in Chapter 10. In particular, we consider the situation where we
have a parameter of interest, ω, and some other parameters that are part of the model
and estimated, ψ . Our question – presumably of theoretical interest – is the extent to
which the data support the null hypothesis H0 : ω = ω0 or the alternative hypothesis
H1 : ω �= ω0. Assuming that ψ is independent of ω – specifically, that p(ψ |ω0, H1) is
equal to p(ψ |H0) – a Bayes factor can be simply obtained as

BF01 = p(ω = ω0|y, H1)

p(ω = ω0|H1)
. (11.6)

In other words, the BF is estimated by evaluating the posterior and the prior under
the general model at the null value ω = ω0, and taking the ratio of those two quanti-
ties. Wagenmakers et al. (2010) walk through the derivation of Equation 11.6 in their
Appendix A. The essential insight is that under reasonable assumptions (including the
equality of priors mentioned earlier, that ψ is independent of ω), p(y|H0) = p(y|ω =
ω0, H1). Accordingly, by Bayes’ theorem,
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p(y|H0) = p(ω = ω0|y, H1)p(y|H1)

p(ω = ω0|H1)
.

We divide both sides by p(y|H1) to obtain the Bayes Factor BF01 = p(y|H0)/p(y|H1).
The p(y|H1) cancels out on the right-hand side and we are left with Equation 11.6.

One question that is sometimes asked in application of the signal detection model
is whether the criterion is higher (stricter) or lower (laxer) than expected under an
unbiased model (e.g., Stanislaw and Todorov, 1999; Lerman et al., 2010). In other
words, we can ask whether there is any evidence that b �= 0 (see Figure 8.4). Listing 11.3
demonstrates how we might answer this question using the Savage-Dickey ratio. For
illustrative purposes, we assume a smaller number of signal and noise trials (20), and
that the number of hits and false alarms is 12 and 2 respectively. We begin by sourcing
the file SDT small.R, a file very similar to Listing 8.5 that calls JAGS to obtain posterior
samples of d and b for the data just described. Next, we need to be able to obtain the
probability density p(b|y, H1) by feeding in b = 0. The problem is that we do not have
a probability density function for the posterior, just samples from the posterior. The
solution is to use the logspline function (from the “logspline” package), which returns
a spline estimating the (log) density function from the posterior samples (stored in the
object blogspl). We then use the dlogspline function to obtain an estimate of the
posterior density at b = 0 (passing in the spline estimate of the log-density, blogspl,
as an argument), and dividing by the prior evaluated at b = 0 gives the Savage-Dickey
ratio. The resulting BF01 ≈ 0.4, the evidence in favor of the null hypothesis. We can
turn this into evidence in favor of the alternative hypothesis by taking the reciprocal, so
that BF10 ≈ 2.5. Accordingly, we have weak evidence that b �= 0. Figure 11.2 illustrates
this ratio graphically using the code shown next in the listing.

1 l i b r a r y (logspline )
2

3 s o u r c e ( ”SDT s m a l l . R” )
4 mcmcs <− as . m a t r i x (mcmcfin )
5

6 blogspl <− logspline (mcmcs [ , ” b ” ] )
7

8 BF <− dlogspline ( 0 ,blogspl ) / dnorm ( 0 , 0 , 1 )
9 p r i n t (BF )

10

11 pdf ( f i l e =” SavageD . pdf ” , width=5 , height = 5)
12 x <− seq ( −0 . 2 5 , 0 . 2 5 , l e n g t h .out = 1000)
13 priy <− dnorm (x , 0 , 1 )
14 posy <− dlogspline (x , blogspl )
15 m a t p l o t (x , c b i n d (priy ,posy ) , type=” l ” ,
16 xlab=” b ” , ylab=” Prob D e n s i t y ” , lwd=2)
17 l e g e n d ( −0 .2 ,1 , l e g e n d =c ( ” P r i o r ” , ” P o s t e r i o r ” ) , lty= 1 : 2 , ←↩

c o l = 1 : 2 , lwd=2)
18 p o i n t s ( 0 , dnorm ( 0 , 0 , 1 ) ) ; t e x t ( 0 . 0 1 5 , ←↩

dnorm ( 0 , 0 , 1 ) + 0 . 0 5 , ” p ( b =0 |H1 ) ” )
19 p o i n t s ( 0 , dlogspline ( 0 , blogspl ) ) ; t e x t ( 0 . 0 5 , ←↩

dlogspline ( 0 , blogspl ) −0.05 , ” p ( b =0 |y , H1 ) ” )
20 dev . o f f ( )
21
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22 SDT ll <− f u n c t i o n (d ,B ,h ,f ,sigtrials ,noistrials ) {
23 r e t u r n (−2∗ (
24 l o g ( dbinom (h ,sigtrials , pnorm (d / 2−B ) ) ) +
25 l o g ( dbinom (f ,noistrials , pnorm(−d / 2−B ) ) )
26 ) )
27 }
28

29 llgen <− opt im ( c ( 1 , 0 ) , f u n c t i o n (x ) ←↩
SDT ll (x [ 1 ] ,x [ 2 ] ,h ,f ,sigtrials ,noistrials ) )

30 llspec <− opt im ( 1 , f u n c t i o n (x ) ←↩
SDT ll (x [ 1 ] , 0 ,h ,f ,sigtrials ,noistrials ) ,

31 method=” B r e n t ” , lower =−5, uppe r =5)
32 chi2diff <− llspec$value − llgen$value
33 p r i n t (chi2diff ) ; p r i n t (1− p c h i s q (chi2diff , 1 ) )

Listing 11.3 Savage-Dickey ratio applied to the signal detection model

We can compare the conclusions from the Savage-Dickey Bayes factor to those from
the likelihood ratio test as discussed in Chapter 10. Lines 22 to 33 fit general and
restricted (b = 0) versions of the SDT model to the data using maximum likelihood
estimation. We first define a function SDT ll. There, we separately calculate the joint
likelihood for the hits on signal trials, and false alarms on noise trials, using the binomial
probability function. The function pnorm is used to obtain the predicted probability
of hits and false alarms, using the same transform as was used to calculate phih and
phif in Listing 8.4. This predicted probability is then turned into a likelihood using the
methods detailed in Chapter 4. The optim function is then used to fit two versions of
the model: a general model in which B can freely vary, and another model in which B
is fixed to 0. As detailed in Chapter 10, we can then assess the difference in deviance
(difference in −2 ln L, given by chi2diff in the code) between the models using the
χ2 test. For these models, the test results are χ2(1) = 5.06, p = 0.024, a single degree
of freedom reflecting that the general model has one additional free parameter over
the simpler model. This standard frequentist test tells us that b is significantly different
from 0. Although both approaches point to similar qualitative conclusions, the Bayes
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Figure 11.2 Illustration of the Savage-Dickey density ratio for the signal detection model,
examining whether b �= 0.
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11.2 Methods for Obtaining the Marginal Likelihood 287

factor urges caution in concluding too confidently that b is different from 0, as the
evidence for the alternative model is relatively weak.

11.2.4 Transdimensional Markov Chain Monte Carlo

A more advanced set of methods fall under the rubric of transdimensional MCMC.
Transdimensional MCMC procedures estimate Bayes factors by explicitly incorporating
a model indicator into a hierarchical model, and sampling from the hierarchical model.
In other words, we assume a categorical variable M that takes on discrete values that
correspond to different models; for example, M = 1 might correspond to an exponential
model of forgetting, while M = 2 corresponds to a power model. Both theoretical
models are then specified in a “supermodel” from which we draw posterior samples
for the parameters of both models. The key step is that we also draw posterior samples
from the model indicator M. Accordingly, if the data are more consistent with Model 1,
Model 1’s indicator should be sampled more frequently.

This general approach is called transdimensional MCMC because the model jumps
between different dimensions (i.e., different parameter spaces). Two main variants of
transdimensional MCMC are available to address one issue with the procedure just
described. This issue is that the dimension of the model changes across samples as one
or the other model is sampled, and this violates a condition of convergence for MCMC
algorithms (Carlin and Chib, 1995). One solution is offered by reversible jump MCMC
(Green, 1995), which extends the standard Metropolis-Hastings algorithm. In reversible
jump MCMC, the proposal distribution for moving between models is constructed so as
to maintain a constant dimension size between the models. Here, we will discuss another
method called the product space method (Carlin and Chib, 1995). This name comes from
the assumption that the effective parameter space is the product of the parameter spaces
of the individual models. The product space method works by drawing samples for all
parameters at each time step. We present the product space method here as it has been
recently introduced to psychology (Kruschke, 2011; Lodewyckx et al., 2011), and is
straightforward to implement in JAGS.

Listing 11.4 shows a JAGS script to sample from a supermodel covering the expo-
nential and power models of forgetting, discussed in Chapter 9 and revisited earlier in
Section 11.2.1 above. To make things simpler to understand, we are fitting the data from
a single participant. We first specify a model node M, a categorical indicator variable
indicating which model is currently “active.” At each time step, the Gibbs sampler in
JAGS will randomly sample a value from this categorical distribution, so that at any one
time M = 1 or M = 2. Here, Model 1 is the exponential model, and Model 2 is the
power model. The prior probability of M being set to one of these values is specified
by the the prior probability prior1, the prior probability for Model 1 (and Model 2 has
the complementary prior 1−prior1). We also specify a parameter pM2 that is equal to
0 or 1 depending on whether Model 1 or Model 2 (respectively) is currently active (the
step function converts positive and negative values to 1 and 0 respectively). Monitoring
pM2 is just for convenience: if we average the values in pM2 we will have an average of
the posterior probability for Model 2.
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1 model {
2 # model node
3 M ˜ dcat (p [ ] ) ;
4 p [ 1 ] <− prior1 ; p [ 2 ] <− 1−p [ 1 ]
5 pM2 <− s t e p (M−1.5)
6

7 # L i k e l i h o o d s
8 f o r (j in 1 :nt ) {
9 theta [ 1 ,j ] <− a1+(1−a1 ) ∗b1∗exp(−alpha∗ t [j ] )

10 theta [ 2 ,j ] <− a2+(1−a2 ) ∗b2∗pow ( ( t [j ] + 1 ) ,− b e t a )
11 k [j ] ˜ dbin (theta [M ,j ] ,n )
12 }
13

14 ## −−−−−−−− Model 1 ( exp ) p r i o r s
15 a1 ˜ d b e t a (a1 .s1 [M ] ,a1 .s2 [M ] )T ( 0 , 0 . 2 )
16 b1 ˜ d b e t a (b1 .s1 [M ] ,b1 .s2 [M ] )
17 alpha ˜ d b e t a (alpha .s1 [M ] ,alpha .s2 [M ] )
18

19 # −−−−−−−−Model 2 ( power ) p r i o r s
20 a2 ˜ d b e t a (a2 .s1 [M ] ,a2 .s2 [M ] )T ( 0 , 0 . 2 )
21 b2 ˜ d b e t a (b2 .s1 [M ] ,b2 .s2 [M ] )
22 b e t a ˜ d b e t a ( b e t a .s1 [M ] , b e t a .s2 [M ] )
23

24 }

Listing 11.4 JAGS script to carry out product space sampling for power and exponential
models of forgetting

The next section of code specifies the two model functions that map parameters
into predicted proportions correct. Note that the a and b parameters have been rela-
belled to distinguish between the a and b parameters in the exponential model, and
the same parameters in the power model. The predicted proportions correct are then
linked to the data via the binomial likelihood function on Line 11. A critical step here
is that the predicted probabilities entering into the likelihood calculating are only those
from the currently active model. Accordingly, only the active model (the model indexed
by the current value of M) is related to the data at any one time.

The remainder of the code specifies the prior probabilities on the model parameters.
Given that a, b, α and β are all bounded at 0 and 1, we specify Beta prior distributions
for all parameters. One thing to note is that the specified prior depends on the current
model index M. We will defer the explanation for this choice until after we have seen
this model in action.

The R code in Listing 11.5 calls the JAGS code in Listing 11.4. The first part of the R
script is mostly recycled from Listing 9.4, and generates some data from the exponential
model using known parameter values. We then specify the priors on the parameters, all
of which are Beta(1,1) priors. For the moment this will seem redundant, as we seem to
set a prior for each parameter twice! The reason for this will soon become clear. We then
move to sampling from the supermodel. We first specify a prior probability for Model 1
(the exponential). For the moment we will take it as given that this prior probability
is 0.2, and talk about the choice of this prior later. We then use standard rjags calls
to initialize and estimate the model. Note that we use long burn-in and monitoring
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11.2 Methods for Obtaining the Marginal Likelihood 289

periods, as it turns out that estimation of the model indicator is quite inefficient as pre-
sented. Line 72 calculates the posterior probability of Model 2 by averaging pM2 across
the four chains and the 10,000 iterations in each chain. The next line then calculates the
Bayes factor for Model 1 over Model 2. The posterior odds are given by 1−post2 (the
estimated posterior probability of Model 1) divided by post2. To calculate the Bayes
factor, we need to divide the posterior odds by the prior odds. Recall that

p(M1|y)
p(M2|y) = p(y|M1)

p(y|M2)

p(M1)

p(M2)
.

In order to obtain the Bayes factor p(y|M1)/p(y|M2) we must rearrange the equation, so
that

p(y|M1)

p(y|M2)
= p(M1|y)

p(M2|y)
p(M2)

p(M1)
.

1 l i b r a r y (rjags )
2 l i b r a r y (MASS )
3

4 tlags <− c ( 0 , 1 , 5 , 10 , 20 , 50)
5 nlags <− l e n g t h (tlags )
6

7 nitems <− 40
8

9 nrecalled <− r e p ( 0 ,nlags )
10

11 a <− 0 . 1
12 b <− . 9 5
13 alpha <− . 2
14

15 # s i m u l a t e d a t a
16 f o r (j in 1 :nlags ) {
17 p <− a + (1−a ) ∗ b ∗ exp(−alpha∗tlags [j ] )
18 nrecalled [j ] <− rbinom ( 1 ,nitems ,p )
19 }
20

21 # p l o t ( t l a g s , n r e c a l l e d )
22

23 a1 .s1<−{ } ; a1 .s2<−{ } ; a2 .s1<−{ } ; a2 .s2<−{ }
24 b1 .s1<−{ } ; b1 .s2<−{ } ; b2 .s1<−{ } ; b2 .s2<−{ }
25 alpha .s1<−{ } ; alpha .s2<−{ } ; b e t a .s1<−{ } ; b e t a .s2<−{ }
26

27 ###−−−− P r i o r p a r a m e t e r s
28 ## Model 1 ( e x p o n e n t i a l )
29 # p r i o r s
30 a1 .s1 [ 1 ] <− 1 ; a1 .s2 [ 1 ]<− 1
31 b1 .s1 [ 1 ] <− 1 ; b1 .s2 [ 1 ]<− 1
32 alpha .s1 [ 1 ] <− 1 ; alpha .s2 [ 1 ] <− 1
33

34 # psuedo−p r i o r s −−s e t t h e s e t o p r i o r s f o r t h e moment
35 a1 .s1 [ 2 ] <− 1 ; a1 .s2 [ 2 ]<− 1
36 b1 .s1 [ 2 ] <− 1 ; b1 .s2 [ 2 ]<− 1
37 alpha .s1 [ 2 ] <− 1 ; alpha .s2 [ 2 ] <− 1
38

39 ## Model 2 ( power )
40 # p r i o r s
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41 a2 .s1 [ 2 ] <− 1 ; a2 .s2 [ 2 ]<− 1
42 b2 .s1 [ 2 ] <− 1 ; b2 .s2 [ 2 ]<− 1
43 b e t a .s1 [ 2 ] <− 1 ; b e t a .s2 [ 2 ] <− 1
44

45 # psuedo−p r i o r s ( t e m p o r a r y )
46 a2 .s1 [ 1 ] <− 1 ; a2 .s2 [ 1 ]<− 1
47 b2 .s1 [ 1 ] <− 1 ; b2 .s2 [ 1 ]<− 1
48

49 # −−−−−−−−−−−−E s t i m a t e pM2
50 prior1 <− 0 . 2 # t h i s v a l u e a f f e c t s t h e mixing , s h o u l d ←↩

a p p r o x i m a t e 1 / p o s t e r i o r
51 expmod <− jags . model ( ” powerexp . j ” ,
52 d a t a = l i s t ( t = tlags ,
53 k = nrecalled ,
54 n = nitems ,
55 nt = nlags ,
56 a1 .s1 = a1 .s1 , a1 .s2 ←↩

= a1 .s2 ,
57 a2 .s1 = a2 .s1 , a2 .s2 ←↩

= a2 .s2 ,
58 b1 .s1 = b1 .s1 , b1 .s2 ←↩

= b1 .s2 ,
59 b2 .s1 = b2 .s1 , b2 .s2 ←↩

= b2 .s2 ,
60 alpha .s1 = alpha .s1 , ←↩

alpha .s2=alpha .s2 ,
61 b e t a .s1 = b e t a .s1 , ←↩

b e t a .s2= b e t a .s2 ,
62 prior1 = prior1 ) ,
63 n .chains=4)
64

65 # b u r n i n
66 u p d a t e (expmod ,n .iter=1000)
67 # pe r fo rm MCMC
68 parameters <− c ( ” a l p h a ” , ” b e t a ” , ” t h e t a ” , ”pM2” )
69 mcmcfin<−coda .samples (expmod ,parameters , 1 0 0 0 0 , thin=1)
70 #summary ( mcmcfin )
71 mm <− as . m a t r i x (mcmcfin )
72 post2 <− mean ( as . m a t r i x (mcmcfin ) [ , ”pM2” ] )
73 p r i n t ((1 −post2 ) /post2∗(1−prior1 ) /prior1 )
74

75 # p l o t a c f
76 myacf <− { }
77 f o r (chain in 1 : 4 ) {
78 myacf <− c b i n d (myacf , acf (mcmcfin [ [chain ] ] [ , ”pM2” ] , ←↩

lag . max=30 , p l o t =F ) $acf )
79 }
80

81 m a t p l o t ( 0 : 1 0 , myacf [ 1 : 1 1 , ] , type=” l ” ,
82 xlab=” Lag ” ,ylab=” A u t o c o r r e l a t i o n ” ,ylim=c ( 0 , 1 ) )

Listing 11.5 R code to conduct sampling using product space method

The actual Bayes factor that is obtained varies across simulated data sets. If you
compare the BF to that obtained from numerical integration for a particular data set,
you will see that the two methods are in good agreement.
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11.2 Methods for Obtaining the Marginal Likelihood 291

Having seen how the product space method can be used to obtain estimates of model
probabilities, we can go back and talk about the puzzling features of the scripts. One
issue with the product space method is that the sampler may underexplore models that
have low probabilities. For example, if one model is 100 times more likely than another,
the sampler will on average spend 100 times as many iterations sampling from the more
likely model if the models have been assigned equal prior probabilities. Accordingly,
there will be relatively few jumps between the models, and the estimate of the model
probability for the less likely model will be quite variable.

A solution to this lies in the recognition that the model indicators are sampled in
proportion to the posterior probabilities. Accordingly, if we set the prior probabilities to
be the inverse of the marginal likelihoods (let’s assume for the moment that we know the
values for those marginal likelihoods), the posterior probabilities for each model will be
0.5, and JAGS will spend roughly half its time sampling from the two models. When
we calculate the Bayes factor on Line 72 and the following line, we divide through by
the model prior probabilities, and so we can set those prior probabilities to any value
we like in order to encourage sampling from both models. Hopefully you have seen the
one flaw in this cunning plan: in order to do this, we first need to know the Bayes factor
(i.e., the ratio of marginal likelihoods), the very quantity we are trying to estimate in the
first place!

Really, we just need a value that roughly approximates the Bayes factor to guarantee
reasonably high sampling rates for the model with the smaller marginal likelihood.
Lodewyckx et al. (2011) describe how a rough approximation can be obtained using
the bisection algorithm, a method for finding the maximum or minimum of a univari-
ate function. Lodewyckx et al. (2011) provide a detailed and accessible description,
and we direct the interested reader there for further information. A similar method
to that of Lodewyckx et al. (2011) could be implemented in R using the optimize

function (which uses Brent’s method, a combination of the bisection algorithm and
parabolic interpolation). The prior1 probability here was obtained from the estimates
from numerical integration of the marginal likelihoods for several simulated data sets
(i.e., by cheating).

One other factor that can greatly affect the sampling of model probabilities – specif-
ically, the extent of switching between the models – is the choice of prior for the
parameters of the individual models. In particular, one important feature of sampling
using the product space method is that JAGS will sample posteriors for all parameters
at each time step, including those for the model that is not currently active. However,
because that model is not linked to the data when it is inactive (Line 11), JAGS does not
sample from the posterior for the model, but rather samples from the prior. The priors
that are sampled when a model is inactive are called pseudopriors. In other words, if
Model 1 is active, the priors that are used to sample from Model 1’s posteriors are the
genuine priors for Model 1, while the parameter values for Model 2 are sampled from
Model 2’s pseudopriors (and vice versa). This is why the priors in Listing 11.4 are
dependent on the current model index M.

Theoretically, the choice of these pseudopriors is irrelevant, as they are integrated
out when calculating the Bayes Factor (Lodewyckx et al., 2011). In practice, the pseu-
dopriors can be critical to determining the mixing of the two models. Specifically, the
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292 Bayesian Model Comparison Using Bayes Factors

sampler can be encouraged to jump between models – and avoid getting stuck in a single
model for a large number of iterations – by choosing pseudopriors that approximate the
posterior density for the parameters. In the example just shown, the same uninformative
priors were also used as the pseudopriors, meaning the sampling of the model indicator
M is likely to have been inefficient. Instead, we can set the pseudopriors by first sampling
from the individual models, and using the posterior samples to set pseudopriors that
closely approximate the posterior (e.g., Kruschke, 2011; Tenan et al., 2014).

Listing 11.6 shows how we can obtain pseudopriors for the exponential and power
models. For each model we call the same JAGS script (Listing 11.4), and set prior1 to
either 0 (power model) or 1 (exponential model) to force sampling from only a single
model. We then (Line 55 onward) fit beta distributions to the posterior samples for
each model using the fitdistr distribution in the MASS package. We can then run the
sampler for the full supermodel (the second part of Listing 11.4) to obtain our Bayes
factor as before.

1

2 # −−−−−−−−−−−−E s t i m a t e e x p o n e n t i a l on ly
3 expmod <− jags . model ( ” powerexp . j ” ,
4 d a t a = l i s t ( t = tlags ,
5 k = nrecalled ,
6 n = nitems ,
7 nt = nlags ,
8 a1 .s1 = a1 .s1 , ←↩

a1 .s2 = a1 .s2 ,
9 a2 .s1 = a2 .s1 , ←↩

a2 .s2 = a2 .s2 ,
10 b1 .s1 = b1 .s1 , ←↩

b1 .s2 = b1 .s2 ,
11 b2 .s1 = b2 .s1 , ←↩

b2 .s2 = b2 .s2 ,
12 alpha .s1 = ←↩

alpha .s1 , ←↩
alpha .s2=alpha .s2 ,

13 b e t a .s1 = ←↩
b e t a .s1 , ←↩
b e t a .s2= b e t a .s2 ,

14 prior1 = 1) ,
15 n .chains=4)
16

17 # b u r n i n
18 u p d a t e (expmod ,n .iter=1000)
19 # pe r fo rm MCMC
20 parameters <− c ( ” a1 ” , ” b1 ” , ” a l p h a ” )
21 mcmcfin<−coda .samples (expmod ,parameters , 5 0 0 0 )
22 mm <− as . m a t r i x (mcmcfin )
23

24 # s e t pseudo−p r i o r s t o a p p r o x i m a t e p o s t e r i o r
25 a1fit <− fitdistr (mm [ , ” a1 ” ] , ” b e t a ” , ←↩

s t a r t = l i s t (shape1=1 ,shape2=1) ) $estimate
26 b1fit <− fitdistr (mm [ , ” b1 ” ] , ” b e t a ” , ←↩

s t a r t = l i s t (shape1=1 ,shape2=1) ) $estimate
27 alphafit <− fitdistr (mm [ , ” a l p h a ” ] , ” b e t a ” , ←↩

s t a r t = l i s t (shape1=1 ,shape2=1) ) $estimate
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28 a1 .s1 [ 2 ] <− a1fit [ 1 ] ; a1 .s2 [ 2 ]<− a1fit [ 2 ]
29 b1 .s1 [ 2 ] <− b1fit [ 1 ] ; b1 .s2 [ 2 ]<− b1fit [ 2 ]
30 alpha .s1 [ 2 ] <− alphafit [ 1 ] ; alpha .s2 [ 2 ] <− alphafit [ 2 ]
31

32 # −−−−−−−−−−−−E s t i m a t e power l on ly
33 expmod <− jags . model ( ” powerexp . j ” ,
34 d a t a = l i s t ( t = tlags ,
35 k = nrecalled ,
36 n = nitems ,
37 nt = nlags ,
38 a1 .s1 = a1 .s1 , a1 .s2 ←↩

= a1 .s2 ,
39 a2 .s1 = a2 .s1 , a2 .s2 ←↩

= a2 .s2 ,
40 b1 .s1 = b1 .s1 , b1 .s2 ←↩

= b1 .s2 ,
41 b2 .s1 = b2 .s1 , b2 .s2 ←↩

= b2 .s2 ,
42 alpha .s1 = alpha .s1 , ←↩

alpha .s2=alpha .s2 ,
43 b e t a .s1 = b e t a .s1 , ←↩

b e t a .s2= b e t a .s2 ,
44 prior1 = 0) ,
45 n .chains=4)
46

47 # b u r n i n
48 u p d a t e (expmod ,n .iter=1000)
49 # pe r fo rm MCMC
50 parameters <− c ( ” a2 ” , ” b2 ” , ” b e t a ” )
51 mcmcfin<−coda .samples (expmod ,parameters , 5 0 0 0 )
52 mm <− as . m a t r i x (mcmcfin )
53

54 # s e t pseudo−p r i o r s t o a p p r o x i m a t e p o s t e r i o r
55 a2fit <− fitdistr (mm [ , ” a2 ” ] , ” b e t a ” , ←↩

s t a r t = l i s t (shape1=1 ,shape2=1) ) $estimate ←↩

56 b2fit <− fitdistr (mm [ , ” b2 ” ] , ” b e t a ” , ←↩
s t a r t = l i s t (shape1=1 ,shape2=1) ) $estimate

57 betafit <− fitdistr (mm [ , ” b e t a ” ] , ” b e t a ” , ←↩
s t a r t = l i s t (shape1=1 ,shape2=1) ) $estimate

58 a2 .s1 [ 1 ] <− a2fit [ 1 ] ; a2 .s2 [ 1 ]<− a2fit [ 2 ]
59 b2 .s1 [ 1 ] <− b2fit [ 1 ] ; b2 .s2 [ 1 ]<− b2fit [ 2 ]

Listing 11.6 R code to estimate pseudopriors

The asymptotic estimate of the Bayes Factor depends little on whether the approx-
imate posteriors or the non-informative priors are used as pseudopriors. However, the
psuedopriors approximating the posteriors provide more efficient sampling of the model
indicator probabilities. One way of seeing this is plotting the autocorrelations in the
monitor of the model indicator, pM2. Figure 11.3 shows that using the noninformative
priors produces high autocorrelations in pM2, meaning that the mean of pM2 – and
thus the posterior probability of Model 2 – is estimated inefficiently. In contrast, the
right panel of Figure 11.3 shows that the first-order correlations are effectively 0 for
all lags > 0 when sampling from pseudopriors, meaning that the estimation for those
pseudopriors will be more efficient.
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Figure 11.3 Autocorrelations in samples of the model indicator pM2 using noninformative
pseudo-priors (left panel) and pseudo-priors approximating the posterior (right panel). The lines
in each panel correspond to different chains. No thinning was applied here, so lag refers to lag
in iterations.

Like some of the other methods discussed here, the product space method is appeal-
ing because most of the grunt work is carried out within a sampler such as JAGS.
However, it is quite fiddly: proper mixing of the model indicator requires a suitable
prior on M, and pseudopriors that closely approximate the posteriors. This also means
that it is especially important to track the model indicator parameter, and the inter-
ested reader should consult Appendix C of Lodewyckx et al. (2011) for some ideas on
model-based tracking of the model indicator probabilities. The Lodewyckx et al. (2011)
tutorial, along with Chapter 10 of Kruschke (2011) and the paper of Tenan et al. (2014),
provide further examples of using the product space method to compare models (see
also Scheibehenne et al., 2013). The original Carlin and Chib (1995) paper, as well as
explaining the rationale behind the method, also provides an example application to
selecting predictors in a regression setting.

11.2.5 Laplace Approximation

The methods discussed thus far rely on numerical approximation of the marginal
likelihood. There also exist several methods for obtaining analytic approximations to
the marginal likelihood. These methods are analytic in that simple equations for the
marginal likelihood or Bayes Factor are obtained by derivation. They are approximate
by virtue of making asymptotic assumptions about the prior and likelihood that are
unlikely to exactly hold for any particular application.

One such method assumes that our likelihood function is asymptotically normal. This
method, using Laplace’s method of approximation (see, e.g., Chapter 27 of MacKay,
2003), is due to Tierney and Kadane (1986), and is worth going through in some detail as
an example of how we arrive at principled approximations in mathematics and statistics.
The presentation here will follow that in a readable paper by Raftery (1995). The reader
who is concerned only with the application of this method can skip to Equation 11.11.
For convenience, we do not refer to a particular model; all the following equations are
implicitly conditional on some model M.
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Recall that we are aiming to find the marginal likelihood
∫

p(y|θ)p(θ)dθ . We begin by
defining g(θ) = ln[ p(y|θ)p(θ)]. The Laplace approximation of the marginal likelihood
relies on a method called Taylor series expansion, applied to the function g(θ). The
Taylor series expresses a function as an infinite sum of its derivatives, f (x) = f (z) +
f ′(z)

1! (x − z) + f ′′(z)
2! (x − z)2 + · · · . (We are not going to prove that relationship here,

just take it as given). The first term simply states f as a function of some arbitrary
value z. The second term then adds the derivative of f at the point z, f ′(z), weighted
by the difference between x and z and the factorial of 1. The next term adds the sec-
ond derivative of f , f ′′(z), weighted by the square of the difference between x and z
and factorial 2. As the number of terms increases, the approximation becomes more
accurate, but for approximating the marginal likelihood we can stop at order 2 (i.e.,
the second derivative). This is because our (log) posterior is likely to be unimodal, and
with sufficient N, approximately symmetric. The second-order Taylor series expansion
is also convenient because it provides a useful relation to the normal distribution, as will
be seen below.

When applied to g(θ), the expansion gives

g(θ) ≈ g(θ̃)+ (θ − θ̃)Tg′(θ̃)+ 1

2
(θ − θ̃)Tg′′(θ̃)(θ − θ̃). (11.7)

We have expanded g about the value θ̃ , which is the mode of the posterior distribution.
The function g(θ) will have the same mode: it is obtained from the full posterior by
omitting p(y) in the denominator, which only acts as a constant here, and taking the log
of p(y|θ)p(θ) does not change the location of the mode. The derivative of g at θ is 0
(if it is the maximum of the function, its derivative will be 0), and as a result the entire
second term in Equation 11.7 becomes 0. We are left with:

g(θ) ≈ g(θ̃)+ 1

2
(θ − θ̃)Tg′′(θ̃)(θ − θ̃). (11.8)

The squiggly equals sign in Equations 11.7 and 11.8 indicates an approximate rela-
tionship. The error in this approximation increases with the difference between θ and θ̃

(formally, the error is of order (θ − θ̃)2), so as long as (θ − θ̃) is small, the approximation
will be accurate. As will be seen shortly, we will mostly only care about values of θ

that are close to θ̃ , as only those values will substantially contribute to the integration
underlying the marginal likelihood (Tierney and Kadane, 1986).

The component g′′ is the matrix of partial second derivatives of g (also called the
Hessian matrix). This is very similar to the Fisher information matrix discussed in
Chapter 10, but in this case represents the curvature of ln[p(y|θ)p(θ)] rather than the
curvature of the log-likelihood surface ln[p(y|θ)]. The T represents the transpose opera-
tion, which is needed to perform matrix multiplication in the final term of Equation 11.8
(we give an introduction to matrix algebra in Chapter 13).

The marginal likelihood can now be obtained as the integral of the exponential
of g(θ):

p(y) =
∫

exp (g(θ)) dKθ . (11.9)
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The dK indicates that we are integrating across all K elements of θ ; that is, K is the
number of parameters, and thus the dimensionality of θ . Substituting Equation 11.8 we
get the approximation

p(y) ≈
∫

exp
(

g(θ̃)
)

exp

(
1

2
(θ − θ̃)Tg′′(θ̃)(θ − θ̃)

)
dKθ .

The factor exp
(

g(θ̃)
)

is constant with respect to θ , and so can be moved outside the

integral to give

p(y) ≈ exp
(

g(θ̃)
) ∫

exp

(
1

2
(θ − θ̃)Tg′′(θ̃)(θ − θ̃)

)
dKθ . (11.10)

This can be more compactly expressed when we recognize the relation to the integral of
a multidimensional Gaussian function, where:

∫
exp

(
−1

2
xTAx

)
dKx =

√
(2π)K

det A

This is identical in form to the integral in Equation 11.10, and so substituting we get

p(y) ≈ p(y|θ̃)p(θ̃)
√
(2π)K

det A
, (11.11)

where p(y|θ̃)p(θ̃) is the the exponential of g evaluated at the mode θ̃ , and A is the
Hessian matrix containing the partial second derivatives of −g(θ̃). The function det is
the determinant function that served a similar role in the context of minimum description
length (Equation 10.15).

In order to apply the Laplace approximation, one needs to provide both p(y|θ̃)p(θ̃)
and A. In some situations these might be obtained analytically or by numerical methods,
but in many cases the easiest approach is to use samples from the posterior distribution
obtained via Markov Chain Monte Carlo (MCMC), especially if one is already esti-
mating posteriors for the purposes of parameter estimation (e.g., Lewis and Raftery,
1997). Some measure of central tendency θ̃ of the posterior is needed, along with an
estimate of A (e.g., by feeding in the sample covariance matrix). However, DiCiccio
et al. (1997) note that these simple approaches can provide poor estimates, and suggest
some improved methods for estimating p(y|θ̃)p(θ̃) and A. In addition, it should be noted
that the Laplace approximation will only provide accurate estimates to the extent that
the mass of the distribution is close to θ̃ . For example, Rouder et al. (2012) report that
the Laplace estimate performed poorly in the case of a statistical model – the linear
model in the Analysis of Variance – because the posterior was relatively heavy tailed.

The Laplace approximation is not commonly used in psychology. As covered next,
it turns out that there are some further assumptions we can make to arrive at an even
simpler approximation to the marginal likelihood.
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11.2.6 Bayesian Information Criterion

A commonly used metric for comparing models is the Bayesian Information Criterion
(BIC). This was initially derived by Schwarz (1978) as an alternative to Akaike’s Infor-
mation Criterion (AIC) that was discussed in Chapter 10. The BIC is given by

BIC = −2 ln L(θ̂ |y, M)+ K ln N, (11.12)

where the first term is the deviance (−2 times the maximized log-likelihood) and the
second term is simply the number of parameters K multiplied by N, the number of data
points on which the likelihood calculation is based.

Before talking about using BIC for Bayesian model comparison, a puzzling and
controversial feature of Equation 11.12 should be addressed. Although being ostensibly
Bayesian, Equation 11.12 makes no reference to the prior distribution! Instead, the BIC
assumes a particular noninformative prior called the unit information prior (e.g., Kass
and Raftery, 1995). This is a prior that is relatively wide with respect to the posterior, and
represents the amount of information we gain from only a single data point. To see how
this prior leads to Equation 11.12, we can further develop the Laplace approximation
in Equation 11.11, again following the informal derivation presented in Raftery (1995).
First, it is useful to take the log of both sides of Equation 11.11 to obtain

log[ p(y)] ≈ ln[ p(y|θ̃)] + ln[ p(θ̃)] + K

2
ln(2π)− 1

2
ln(det A). (11.13)

We then make an asymptotic (i.e., large sample) assumption that the posterior mode
θ̃ is equal to the maximum likelihood estimate θ̂ . This is a nontrivial assumption, and
will only hold to the extent that we have a large amount of data, and the prior has no
influence on the posterior. Another asymptotic approximation the BIC relies on is that
A ≈ NI, where N is the number of data points, and I is the expected Fisher information
from a single observation. We encountered the Fisher information matrix – the matrix
of partial second derivatives of the log-likelihood surface – in Chapter 10. The curvature
of the log-likelihood surface gives a measure of how much information the data provide
about θ , and the information from N observations is N times the information obtained
from a single observation. The determinant of A is then approximated by NK det I: we
multiply by N to get the information matrix for N data points, but also need to raise to
the K, as one property of any determinant matrix is that det xA = xk det A, where k is
the number of rows/columns. We can now substitute this into Equation 11.13 to get

log[ p(y)] ≈ ln[ p(y|θ̂)] + ln[ p(θ̂)] + K

2
ln(2π)− 1

2
ln(NK det I),

which can then be rewritten as

log[ p(y)] ≈ ln[ p(y|θ̂)] + ln[ p(θ̂)] + K

2
ln(2π)− K

2
ln(N)− 1

2
ln(det I). (11.14)

Equation 11.14 still just represents the log of the Laplace approximation for the marginal
likelihood (Equation 11.11), but using maximum likelihood estimates in place of
estimates from the full posterior.
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298 Bayesian Model Comparison Using Bayes Factors

To show how the BIC is obtained from Equation 11.14, we need to substitute the prior
implicitly assumed in the BIC, the unit information prior. As mentioned above, this is
the prior representing the information we obtain from a single data point. Specifically,
we assume a prior that is a multivariate normal distribution with mean θ̂ – that is,
the mean of the prior is the maximum likelihood estimate for θ . The formula for a
multivariate normal distribution is

f (θ) = 1√
(2π)K det I−1

exp

(
−1

2
(θ − θ̂)TI(θ − θ̂)

)
,

where the mean of the normal distribution is θ̂ . In addition, this prior by definition
represents the expected information from a single sample, and so we use the inverse of I
as the covariance matrix of this normal distribution (the covariance matrix is the inverse
of the Fisher information matrix under the asymptotic conditions assumed here; see,
e.g., Myung and Navarro, 2005). In order to substitute into Equation 11.14, we need the
log of the prior distribution, which comes out as

log[ f (θ)] = −K

2
ln(2π)+ 1

2
ln(det I)− 1

2
(θ − θ̂)TI−1(θ − θ̂). (11.15)

In Equation 11.14, we evaluate the log prior ln p for θ = θ̂ . This means that (θ − θ̂) = 0,
and the third term of Equation 11.15 drops out, leaving us with

ln[ f (θ̂)] = −K

2
ln(2π)+ 1

2
ln(det I). (11.16)

The penultimate step is to substitute Equation 11.16 as the prior in Equation 11.14.
When we do this, things become much simpler: the first term of Equation 11.16 cancels
out the third term of Equation 11.14, and the second term of Equation 11.16 cancels out
the fifth term of Equation 11.14. We are left with:

log[ p(y)] ≈ log[ p(y|θ̂)] − K

2
log(N). (11.17)

If we multiply Equation 11.17 by −2 to put it in deviance units, this becomes the
formula for the BIC given in Equation 11.12. Accordingly, by specifying a prior that
is minimally informative, and dependent on the data, we obtain a simple approximation
to −2 log p(y), and thus have a quantity that can be used for model comparison and
model selection. The cost of this simplicity is in the assumptions: this is a large-sample
approximation, and assumes a prior determined by the data. We will return to this issue
shortly.

To see how BIC can be used, let’s return to the comparison of cumulative prospect
theory (CPT; Tversky and Kahneman, 1992) and the priority heuristic (Brandstätter
et al., 2006) discussed in the previous chapter. The minimum deviance (−2 log p(y|θ̂))
for CPT was 5378.41, with 150 free parameters in total. The number of data points
N here is the number of participants (30) times the number of choices made by each
participant (180), N = 5400. Accordingly, BIC(CPT) = 5378.41 + 150 ln(5400) =
6667.53. The priority heuristic model only has one free parameter per participant, and
its BIC is given by BIC(PH) = 7242.10 + 30 ln(5400) = 7499.92. Accordingly, CPT
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11.2 Methods for Obtaining the Marginal Likelihood 299

is the model favored by the data, and is estimated to be the model under which the data
are more likely. To quantify this we can convert the BIC values into a Bayes factor.
The BIC estimates −2 log p(y), so to obtain p(y) we must multiply by − 1

2 and take the
exponential. The Bayes factor presenting evidence in favor of CPT is

BFCPT/PH = exp(−0.5 × 6667.53)

exp(−0.5 × 7499.92)
.

If you try and calculate this as written, you may well get a numerical overflow error
(i.e., a program like R will return NaN as the result). The problem is that we are taking
the exponential of some large numbers, and the resulting values are so large that they
cannot be represented on most computers. To avoid this issue, it is better to calculate the
Bayes factor by taking the exponential on the difference in BICs:

BFCPT/PH = exp (−0.5[BIC(CPT)− BIC(PH)]) .

The Bayes Factor is 5.63 × 10180, overwhelming evidence in favor of CPT even when
its greater complexity is taken into account.

One reason to be wary of the conclusion just drawn is that the BIC only takes into
account the number of parameters in a model, and not its functional form or the exten-
sion of parameter space (Myung and Pitt, 1997). This might seem quite puzzling, as the
Fisher information matrix appeared in the informal derivation of BIC presented above,
and the Fisher information matrix does capture complexity in terms of the functional
form of the model (see Chapter 10). However, that derivation assumes that the covari-
ance matrix for a single observation – the value that was fed in as the covariance of
the prior distribution – is proportional to the covariance matrix for the entire sample.
This means that the information carried by the covariance matrix about the functional
form of the model drops out. This leads to a more general issue with the BIC: because
we cannot specify any prior (other than the unit information prior), and because that
prior is not independent of the data, the BIC does not operate in the spirit of Bayesian
inference in allowing us to specify our prior knowledge and then update our knowledge
based on incoming data (e.g., Gelman et al., 1999; Weakliem, 1999). This is a nontrivial
point as it relates to the central philosophy of Bayesian statistics, and there is a question
about whether we are really behaving in a Bayesian way if we have not given some
thought to our prior beliefs. On the other hand, this feature is arguably desirable in
providing a simple, “automatic” manner of testing models and communicating results
in the Bayesian framework, and the prior assumed by the BIC is a reasonable one (Kass
and Wasserman, 1995; Kass and Raftery, 1995). In many cases, alternatives to the BIC
discussed in this chapter and elsewhere may simply be too unwieldy to consider using,
and the BIC is the most practical alternative.

The Relationship Between AIC and BIC
This last point leads to another issue: how does BIC relate to another simple information
criterion measure discussed in the last chapter, Akaike’s infomation criterion (AIC)?
Some discussion has been given to this in the statistical literature (e.g., Burnham and
Anderson, 2002; Kass and Raftery, 1995; Kuha, 2004), with some authors expressing
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300 Bayesian Model Comparison Using Bayes Factors

a strong preference for either the AIC (Burnham and Anderson, 2002) or BIC (Kass
and Raftery, 1995) on a number of grounds. The AIC is argued to be overly liberal
and inconsistent (Kuha, 2004; Wagenmakers and Farrell, 2004) and does not prop-
erly take parameter uncertainty into account. There is also debate about whether these
criteria – particularly the BIC – assume the “true” model is in the set of candidate
models being compared (e.g., Burnham and Anderson, 2004; Wagenmakers and Farrell,
2004; Zucchini, 2000). The BIC, because it is derived in the Bayesian framework,
additionally requires making assumptions about prior distributions on the parameters.
The AIC can equally be cast as Bayesian model selection under the assumption of some
fairly informative priors (Kass and Raftery, 1995). Generally, the differences between
AIC and BIC should not be surprising giving the two criteria were derived to solve
different problems (Burnham and Anderson, 2004; Kuha, 2004; Wasserman, 2000).

Irrespective of such debates, we can point to a major consideration that will be of
interest to most computational modelers in psychology (Liu and Smith, 2009). This is
that the BIC will usually give greater punishment to models with more parameters. The
general form of AIC and BIC is similar, but the BIC will provide a greater punishment
term whenever ln N > 2 – that is, whenever N > 7 – which will usually be the case.
This weighted punishment of complexity means that the BIC has a greater preference
for simplicity than AIC (e.g., Wagenmakers and Farrell, 2004). If there is a premium on
simplicity, the BIC is probably a more appropriate measure. This is particularly the case
when the models are nested. For example, if two nested models differ by a single param-
eter (i.e., the more general model has one additional free parameter), the maximum
possible difference in AIC between the two models is 2. This is because the more general
model will fit at least as well as the simpler model; hence at worst (for the general
model), the −2 ln L values are identical for both models and the maximum possible AIC
difference would be given by 0 − 2 × K, which is 2 for a single parameter (K = 1). This
means we can never find strong evidence in favor of the simpler model using the AIC.
In contrast, the punishment given to more complex models by the BIC scales with the
(log of the) number of observations, meaning that we can find strong evidence for the
simpler model with large N. Additionally, given that the BIC may tend to conservatism,
any evidence against the simpler model in a nested comparison provides good grounds
for concluding that the data favor the more complex model (Raftery, 1999).

Given the disagreements in the literature, we refrain from providing any strong guide-
lines. Authors in the psychological literature rarely justify why they are using AIC
versus BIC. The BIC arguably provides a reasonable and simple estimate of the log
marginal likelihood, and can be recommended on that basis. However, when using
the BIC, it should be kept in mind that a) the procedure has its limitations, both in
being an approximate method, and also in its default assumption of priors, and b) the
procedure will be more conservative (prefer simpler models) than the AIC. The AIC
can be recommended on other grounds (including its estimation of the Kullback-Leibler
distance; Burnham and Anderson, 2004), but will select more complex models than
the BIC. One pragmatic solution is to report both AIC and BIC (in the same way that
some authors report both Bayes factors and p-values when conducting statistical tests);
if the two methods agree, one can feel more confident about drawing conclusions from
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11.3 Bayes Factors for Hierarchical Models 301

model comparison, and if the methods do not agree then the uncertainty in the model
comparison could be acknowledged. One argument against this approach is that the AIC
and BIC are grounded in different philosophical frameworks, and so it should not come
as a surprise that they do not always agree.

11.3 Bayes Factors for Hierarchical Models

The previous section focussed on obtaining Bayes factors for individual participants.
In many cases, those methods can also be used to compare hierarchical models. The
one primary factor to note is to give consideration to the structure of the model. Recall
that in multilevel models we assume that the parameters for individual participants are
sampled from a parent distribution. Accordingly, we have two levels of priors: the priors
for the individual participants (provided by the prior distribution), and the priors on
the parameters of the parent distribution. This means we have two levels of potential
integration:

p(y) =
∫

p(y|θ)p(θ)dθ ,

or

p(y) =
∫

p(y|θ)p(θ |φ)p(φ)dφ, (11.18)

where θ refers to participant-level priors, and φ specify the parameters on groups of
participants. Accordingly, when calculating marginal likelihoods and Bayes factors for
multiple participants, we can focus on different levels of analysis.

One option, commonly used in psychology (e.g., Kary et al., 2015; Steingroever et al.,
2016; Scheibehenne et al., 2013) is to calculate a Bayes factor for each participant in
our data set using the methods outlined above. A simple way of doing this would be to
specify the same prior on θ for each participant i. Alternatively, participant-level priors
can be obtained from group-level priors by integrating across those priors as in Equation
11.18. For example, Kary et al. (2015) obtained samples from the priors on group-level
distributions (later in the chapter we will talk about how these priors were determined
and the samples from those priors were obtained). These samples were then used to
sample individual-level priors. The individual level-priors were then approximated by
fitting standard distributions (e.g., Normal, Beta) to the lower-level samples. The authors
then had participant-level priors pi(θ) that were used to calculate Bayes Factors for
individual participants.

Alternatively, we may want to calculate a Bayes Factor for an entire set of data.
The Savage-Dickey ratio is easily extended to testing nested hypotheses in hierarchical
settings for this purpose, where we can test the null hypothesis that some parame-
ter ω in our model is equal to some null value ω0. This becomes more complicated
in a hierarchical setting. For example, imagine that each participant’s performance is
governed by a parameter θ that determines the probability of being correct on a set
of two-alternative test questions, and that the individual θs are sampled from a Beta
distribution Beta(a,b). We might want to know whether the average θ differs from
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chance (θ = 0.5), but cannot directly determine this using the Savage-Dickey ratio as
described above, since the average θ is not captured by a parameter in the model (each
participant has their own θ ). However, if the parent distribution is instead specified as
a Normal(μ, τ), we can then ask whether there is evidence that the mean of the normal
distribution, μ, differs from 0.5.

One such example is the hierarchical signal detection model discussed in Chapter 9.
Recall that the parent distribution on b – the bias parameter – was specified as a Normal
(μb = 0, τb = ε). We can then ask whether the average bias, μb, differs significantly
from 0. (Contrast this with the example earlier in this chapter, where we asked whether
there was evidence that b differed from 0 for a single participant). We can run that
analysis and directly calculate Bayes factors using the Savage-Dickey method. One
change we will make here is to use more informative priors. Specifically, in the JAGS
model we will specify mud˜ dnorm(1,1/4) and mub˜ dnorm(0,1/4). In both cases,
the standard deviation is 2 (recall that τ = 1/σ 2), indicating that we do not expect large
positive or negative values for either parameter. In addition, we set the mean on the
prior of μd equal to 1, as we think positive values for d are more likely here. After using
JAGS to obtain posterior samples from our model parameters (including μb), we can
then estimate the posterior density on μb using the logspline package, as shown in
Listing 11.7. Across simulated data sets we typically find BF01 > 30, indicating strong
evidence that μb does not differ from 0.

1 l i b r a r y (logspline )
2 blogspl <− logspline (mcmcs [ , ”mub” ] )
3 BF <− dlogspline ( 0 ,blogspl ) / dnorm ( 0 , 0 , 2 )
4 p r i n t (BF )

Listing 11.7 Calculating the Savage-Dickey ratio for μb for the hierarchical signal detection
example (Listing 9.1)

Finally, we briefly mention several information criteria that are analogous to AIC
and MDL (Chapter 10) and the BIC (this chapter). One such measure of corrected
fit for Bayesian models – with particular application to multilevel models – is the
Deviance Information Criterion (Spiegelhalter et al., 2002). The DIC is similar in spirit
to the AIC and BIC in that it corrects the estimated likelihood by a measure of model
complexity. Spiegelhalter et al. (2002) note that in the case of Bayesian hierarchical
models, the effective number of parameters, and thus the effective model complexity,
changes according to the level of focus. They suggest a method for calculating the
model complexity pD so as to arrive at a measure – the DIC – that minimizes out-
of-sample prediction error. DIC is arguably the most popular criterion for Bayesian
models, and is easily obtained using the function dic.samples in the rjags package,
but has been criticized on theoretical and practical grounds, including questions about
whether it is really Bayesian (e.g., Gelman et al., 2014; Plummer, 2008; Spiegelhalter
et al., 2014). The widely applicable information criterion (WAIC) was introduced by
Watanabe (2010) as a more Bayesian measure of generalizability, and is favored by
Gelman et al. (2014) given its explicit relation to cross-validation. Raftery et al. (2007)
developed Monte Carlo versions of AIC (AICm) and BIC (BICm), in response to the
issue with the harmonic mean measure discussed earlier. AICm and BICm estimate both
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components of AIC and BIC using the average and variance of samples of posterior
deviance (obtained by calculating deviance for samples from the posterior). Averell
and Heathcote (2011) show the application of AICm, BICm, and DIC to discriminate
between models of forgetting.

11.4 The Importance of Priors

Priors are an essential component of Bayesian parameter estimation (see Part 2): we
set priors on our parameters that reflect our beliefs (or lack thereof) about the world,
and then update those beliefs based on the evidence from data. It is usually the case,
however, that with even a moderate amount of data the priors will have only a small
influence on the posteriors, so the exact choice of prior is arguably not a major issue,
except to make sure that the estimation is well-behaved. In contrast, the specification of
priors has a fundamental effect on our inferences when performing model comparison
and model selection.

One thing to make clear is that improper priors should not be used to calculate
Bayes factors. Improper priors assign equal value to any possible outcome, and as a
consequence possess awkward features such as not integrating to 1. The Haldane prior
(discussed in Chapter 6) is an example of an improper prior, as is a uniform distribution
covering the entire range of real numbers. The issue is that the area under an improper
prior is only defined up to a multiple of some constant C, where C could be greater
or smaller than 1. This constant will enter into calculation of the marginal likelihood,
so that ∫

p(y|θ)p(θ)Cdθ = Cp(y).

The problem is that without knowing C, we cannot know the value of the marginal
likelihood, and so cannot calculate an exact value for the Bayes Factor.

A more general issue is that the Bayes Factor is sensitive to the choice of prior. In the
case of parameter estimation, the prior serves a useful role in “shrinkage” in hierarchical
models (e.g., Rouder and Lu, 2005), and constraining parameters to plausible values
more generally, but collecting more data will generally minimize the effects of the prior.
If we wish the data to “speak for themselves” we can set a more diffuse (or potentially
non-informative) prior that will have less influence on the posterior, so that the posterior
is dominated by the data-informed likelihood. However, when calculating the marginal
likelihood underlying the Bayes Factor, a more diffuse prior will give more weight to
regions of parameter space that are inconsistent with the data (i.e., where the likelihood
is low). In most cases, this means that a more diffuse prior will effectively punish a
model, as substantial weight will be given to regions of the parameter space where the
data have a low likelihood. Conversely, the marginal likelihood will increase if the prior
is concentrated close to the mass of the likelihood for the data that are being fit.

This is where the subjectivity of the prior really becomes an issue, as different choices
of priors will produce different Bayes factors, and could potentially shift the Bayes
factor from favoring one model to favoring a different model. This issue of prior
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sensitivity – both in parameter estimation and model comparison – has disturbed some
statisticians, and has been given much discussion (Bernardo, 1979). One solution is
to present a sensitivity analysis, in which we show the results for various choices
of prior (Dickey, 1973; Liu and Aitkin, 2008; Sinharay and Stern, 2002), possibly
including default priors (e.g., Jeffreys, 1961) and fully noninformative priors (e.g., the
approximate Haldane prior Beta(ε, ε); see Chapter 6). In previous research, sensitivity
analysis has generally been conducted on nested models testing a null hypothesis, and
so BF is plotted as a function of the variability of the prior on the parameter being
tested. In the case of structurally different models, each with a number of parameters,
this sensitivity analysis could get quite complex. In this case, one suggestion would be
to plot histograms of the (log) marginal likelihoods under each model, and examine to
what extent the histograms overlap.

In many cases, however, researchers do not conduct such a sensitivity analysis. While
some Bayesians view priors as purely subjective (i.e., each researcher has their own
prior), another view is that priors are part of the model, and the important point is
that they should be justifiable. In this sense, specifying a prior is no different from
any other part of the modeling enterprise, where we should be able to defend our
choices about the mechanisms in the model, or its relation to data, to other researchers.
This is in the spirit of objective priors (in that the priors should be useable by other
researchers), but moves away from treating priors as automatic, to rather requiring
modelers to construct reasonable priors for their specific model and the specific set
of data they will be modeling. A view further along this line of thinking is that each
scientist should rightly have their own prior. In this case it seems essential that the
modeling code is made available to other researchers, who may want to examine the
Bayes factor and parameter posteriors under different prior specifications.

Another solution is to use priors that are informed by data. Such an approach to
constructing an informed prior was reported by Kary et al. (2015) using a test of various
models of visual working memory, including the slot model discussed in Section 7.1.2.
Kary and colleagues obtained posterior parameter estimates for the slot model and
a competing resource model (which assumes that a constant memorial “resource” is
distributed across the memoranda, with the share of that resource for each item declining
as the number of items in memory increases) by examining the data for the first half
of their participants. Those posterior distributions were then used to create informative
priors in a two-step process: First, 27 million samples were drawn from the posterior
distributions, and the parameters for the informed prior distributions were obtained by
fitting the distributions to those samples by maximum likelihood means. Figure 11.4
shows the results for the two models. Each quadrant in the figure shows the predicted hit
and false alarm rates in a change detection task, in which the participant must indicate
whether a single probe stimulus has changed (e.g., has a different color) from its original
presentation.

The predictions were obtained by repeatedly sampling from the prior distributions of
all parameters and then turning those values into model predictions: each tiny point in
the figure represents a unique prediction, and the overall distribution of predictions in
each panel is known as the prior predictive distribution.
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Figure 11.4 Predicted hit and false alarm rates in a change-detection task derived using
non-informative (left-hand quadrants) and informative (right-hand quadrants) prior distributions
for two models of visual working memory. The slot model is shown in the top quadrants and the
resource model in the bottom quadrants. Figure reprinted with permission from Kary et al. (2015).

First consider the predictions with noninformative priors on the left. It is clear
that for the slot model (top) the predictions cover the entire possible outcome space
roughly evenly,3 irrespective of set size and the proportion of trials on which the probe
stimulus changed from its original presentation. The pattern is similar for the resource
model (bottom).

Now consider the informative priors on the right. Both models now make far more
accentuated predictions: in particular, they both predict a set size effect because larger
set sizes bring the cloud of predictions closer to the principal diagonal (which represents
chance performance). This makes much sense because we know from an extensive body
of literature that there will be a set size effect in any experiment on visual working
memory.

Those informative priors were then used by Kary et al. (2015) to estimate Bayes
Factors (using importance sampling) for the second half of the participants. The results
were generally supportive of the slots model, though there was some heterogeneity
between participants. Kary et al. (2015) noted that although the resource model often
provided a superior fit to the data, this is attributable to its flexibility (i.e., the greater
spread of its prior predictive distribution) relative to the slots model, which is better able
to predict the data.

3 The model does not permit “negative memory”, that is, worse-than-chance performance. Predictions are
therefore confined to the space on or above the principal diagonal in each panel.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316272503.012
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 02 Aug 2021 at 09:49:11, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316272503.012
https://www.cambridge.org/core


306 Bayesian Model Comparison Using Bayes Factors

11.5 Conclusions

We close by noting that Bayes factors are primarily designed to compare and select
models. It follows that Bayes factors will not be appropriate in every application.
In many cases, parameter estimates will be the primary outcome leading to theoretical
conclusions, and several popular books heavily emphasize this approach over Bayes
factor model comparison (e.g., Kruschke, 2011; Gelman et al., 2013). However, when
we want to ask which of a set of structurally different models provides a better account
of the data, we ultimately must rely on model comparison.

One practical question is – which method to use? Although approximate methods
such as BIC and Laplace approximation are relatively quick and easy, they are
approximate, and should probably only be used if a model is genuinely too difficult or
laborious to estimate by other means. Numerical integration is very effective for models
with small numbers of parameters, and does not require us to run a sampler such as
JAGS. If we are relying on the output of a sampler, and are testing nested models,
then the Savage-Dickey ratio offers a simple method for testing the null hypothesis.
Otherwise, importance sampling is a straightforward method that does not require
the tuning involved in transdimensional MCMC methods such as the product space
method. The main advantage of transdimensional MCMC method seems to be that it
can be carried out almost entirely in the sampler (e.g., JAGS).

11.6 In Vivo

Bayes Factors Are Hard

Chris Donkin
(University of New South Wales)

It’s now been just over three years since I attended Michael Lee and E.J. Wagenmaker’s
Bayesian modeling course in Amsterdam. I’m still learning about Bayesian statistics.
I get the sense I’ll never stop.

Right now, I’m completely sold on Bayesian parameter estimation. If nothing else,
posterior distributions contain a lot of information that you otherwise throw away when
doing maximum-likelihood estimation, and prior distributions help you incorporate your
knowledge about model parameters into the estimation procedure (the kind of knowl-
edge that I recall clumsily entering into optimization methods via bounds on parameters,
when using maximum likelihood). Of course, you also get so much more: credible
intervals, hierarchical models, information about the identifiability of, and correlations
between, your model’s parameters. Nowadays, I want to exclusively use posterior dis-
tributions instead of point estimates.

Bayes factors are trickier. At best, they are perfect. If you have two models whose
priors and likelihoods you believe, then the Bayes factor will give you exactly what you
want to know. It does not get any better than that, at least as far as I can tell. If I have
two models that make predictions about data, and I observe some data, I want to know
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which model better predicted that data, and by how much. A Bayes factor gives you
precisely that number, and does so using simple laws of probability. When it works, the
Bayes factor is a beautiful thing.

At worst, however, Bayes factors are practically irrelevant. If I have two models
whose priors and likelihoods I do not believe, then the Bayes factor will tell you pre-
cisely how much more likely it was that one model, Model “Who Cares,” predicted
the observed data compared to another model, Model “Whatever.” Such a Bayes factor,
while still being mathematically correct, tells me nothing of interest.

So, what does it mean to believe in a model? It is certainly not the assignment of
truth to a model, since all models are wrong. I believe in a model when I think it is
useful. Models are useful when, through their combination of likelihood and prior, they
a) implement a theoretical position that someone would endorse or find theoretically
interesting, while b) generating feasible predictions about to-be-observed data.

Historically, modelers think a lot about the likelihoods of their models. For example,
in this book we see many examples of different models as defined by their likelihood
functions – GCM and prototype models of category learning, signal detection and high-
threshold models of memory, and power and exponential forgetting models. As such,
in cognitive modeling at least, the likelihood function of a model is usually of primary
theoretical interest.

In a Bayesian framework, however, a model is not just its likelihood function. When
it comes to Bayes factors, the priors placed on parameters are critical. To see this, I find
it helpful to think about Bayes factors as testing the predictions made by models. The
likelihood function alone does not generate predictions, rather, it defines the interactions
between parameters that govern the behavior of the model. If the parameters of the
model take on different values, then the behavior, or predictions, of the model differ.
So, to derive concrete predictions from a model, we must also indicate which parameter
values are more or less likely. In other words, we must specify a prior on the parameters
of a model. Once we have our prior, we can then feed parameter values into a likelihood
function according to their prior probability, and thus create a set of concrete predictions
from the model. The result of this process is called the prior predictives for a model.

As it turns out, the prior predictives are intimately related to the Bayes factor. Let’s say
that we created prior predictives for two models. That is, we have calcluated the prior
probability of all possible data sets for Model A and for Model B. Now, imagine we
observe a single, particular data set. The Bayes factor is the ratio of the prior probability
of that observed data set under Model A, and the prior probability of that observed data
set under Model B. As I said earlier, Bayes factors can be beautiful.

Let us return to the issue of creating a useful model. Bayes factors require us to
define both a prior and likelihood for our models. Further, if we want our Bayes factors
to be useful and informative, we are going to need both our likelihood function, and
our priors, to be believable. That is, our prior distribution is also going to have to be
something that someone would endorse as reasonable.

Sometimes, it is easy to set priors. For example, when the parameters of cognitive
models have theoretical meaning on a simple quantitative scale. For example, the prob-
ability of attending to a particular stimulus dimension in a GCM model has a clear
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interpretation. For such parameters, one can use substantive knowledge about likely
values to set their priors. For example, if only one stimulus dimension is relevant for
classifying a set of stimuli, then we would expect most observers to (eventually) attend
to that particular dimension, and we can define the prior to represent this notion.

Unfortunately, it is rare that we are able to set prior distributions for all model param-
eters using only theoretical considerations. For example, some parameters might be
theoretically meaningful, but have a scale that is unintuitive. For example, the rate of
forgetting in a power function is psychologically interpretable, but I would have no idea
what values were more or less likely prior to observing data. Alternatively, there may be
parameters in a model that are required to make the model work, but have no interesting
theoretical interpretation. That is, there may be some parameters for which researchers
are unable to use their expert knowledge to define priors, making such priors difficult to
endorse.

There are two promising ways for setting prior distributions when theoretical consid-
erations are impossible. First, we can use previous data to help define prior distributions.
This chapter gives an example in which we used this approach to test models of visual
working memory. The idea is that we can use previous data (or calibration sets extracted
from our current data) to tell us which parameter values are relatively likely.

Alternatively, we can use prior predictives to help define prior distributions. I really
like this way of doing things. The values of abstract things like model parameters are
often difficult to intuit. The combination of a model’s prior and likelihood, however,
produces predictions that are in terms of data. Unlike parameters, researchers generally
do have expectations about the feasibility of data patterns. As such, we can adjust prior
distributions for model parameters until the prior predictives generated by that model
are believable.

To me, Bayes factors are only interesting to the extent that the prior predictives
generated by the competing models are feasible. Until recently, I was quite happy to
use vague priors on parameters for which I had no knowledge. I would calculate Bayes
factors for such models, and interpret them with glee. Today, I’m very skeptical of such
an approach.

The problem is that models with vague priors tend to predict a lot of very unlikely
data patterns. The resultant Bayes factor will be the relative likelihood of an observed
data pattern under models that predicted, basically, a whole lot of nonsense. I am rarely
interested in the predictions of such models, much less their comparison.

Nowadays, I first ensure that the models I want to compare generate reasonable prior
predictives for the upcoming experiment. That may mean adjusting prior distributions on
parameters until I see reasonable prior predictives, or it may mean first collecting some
pilot data to calibrate the prior distributions. It may also be necessary to interject with
theoretical considerations when building the priors. However, once I have models that
make sensible predictions, while being theoretically meaningful, I revel in the beauty of
the Bayes factor.
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