List of lectures
This is a tentative list of the planned lectures for CCS 2021-2022.
- 21 September: Introduction (ccs_l01_intro.tex)
- 23 September: Model building (ccs_l02_modelbuilding.md)
- 28 September: Parameters and probabilities 1 (ccs_l03_parameters.md)
- 30 September: Parameters and probabilities 2 (ccs_l04_paramsProbs.md)
- 05 October: Parameters and Probabilitys 3 (ccs_l05_probs2.md)
- 07 October: Aggregation and individual differences (ccs_l06_aggregation.md)
- 12 October: Model comparison 1 (ccs_l07_comparison.md)
- 14 October: Model comparison 2 (ccs_l08_comparison2.md)
- 19 October: Case study: Concepts (ccs_l09_concepts.md)
- 22 October: Causality 1 10.0 Causal vs associative relationships 10.1 Theories of causality 10.2 Models of causal inference in psychology: RW, deltaP, power, Bayes
- 26 October: Causality 2 11.0 Causal graphical models 11.2 Causal support 11.3 Order effects and process models
- 29 October: Guest lecture: Tadeg Quillien on Actual causation
- 02 November: Active learning 1 13.0 Information gain – Gureckis (segue from interventions)
- 05 November: Active learning 2: RL/Kelsey/Jess/Neil (?)
- 09 November: overhyps/dirmult
- 12 November: Guest lecture: Frank Mollica on strong generalization
- 16 November: Guest lecture: Chentian Jiang on Active causal learning (confirmed)
- 19 November: automating science
- 23 November: Guest lecture: Simon on MINEBED (confirmed)
- 26 November: Guest lecture: Janie (fallback to best practices / recap (ccs_l10_psychology.md))