Recap - Linear Classifiers

® |ogistic regression =
linear weights + logistic function

p(y=1|x) = oc(wTx+ b)
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Introduction to Neural Networks

Classifying Non-Linear Data

® There is no linear classifier that will
separate the data on the right given
these 2D input features.
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Classifying Non-Linear Data Neural Networks

® Thereis no linear classifier that will ® The performance of the classification methods we have explored depend on the

separate the data on the right given input features, i.e. having a good ‘representation’ of the problem.

1.5
these 2D input f.eat'u res. ® |f we do not have good features, many methods will not be effective, e.g. linear
® |n order to classify it, we can: 1.0 classifiers.
o Use an alternative classifier that can
generate non-linear decision boundaries. 0.5
o Transform our input features so that they ® What if we could learn the features from the input data?
. g 00
are linearly separable. - ® This is what neural networks attempt to do.
-0.5 ® We can think of them as a linear method, where we learn the features.
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Neural Network Intuition Biological Neurons
o Neural networks allow us to learn more effective features from the raw input data. ® Neural networks are motivated by a weak analogy to the human brain, hence the

name artificial neural networks.

® Neurons (also known as nerve cells) are electrically excitable cells in the nervous
system that process and transmit information.

® Neurons are the core components of the brain, spinal cord, and nerves of vertebrates.
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® We can think of them as functions that transform our input into something more
useful for our task of interest.
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Artificial Neurons

® Each artificial neuron is a linear weight vector with a
non-linear activation function.

® \We compute a neuron’s activation as
= g(wTx+b)
® Here, ¢() is a non-linear activation function.

® |f we used the logistic function this would just be logistic
regression.
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Single Layer Network

Note, we are not depicting
the bias term b here.

® \We can connect multiple neurons (i.e. units) together into a directed acyclic graph.

® This results a feed-forward neural network.

® One of the simplest neural networks is a single layer neural network.
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Artificial Neurons

® We can have multiple neurons

I = g(w] x+ by)
U2 = g(w] x+ by)

® We can present this using a weight matrix W and bias

vector b

y=g(Wzx+b)
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Single Layer Network

® |n asingle layer network, we have

® \We can represent this function as

U= g2(w; g1 (Wiz+ by) + bo)
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Multilayer Neural Network

® Individual units in a network are grouped together into layers.

® We can stack multiple layers to form a multilayer network, i.e. a multilayer
perceptron (MLP).

® Here we see a fully connected network with three input features, three hidden layers
with four hidden units in each, and two output units.
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Non-Linear Activation Functions - Choices

® Sigmoid i.e. Logistic 9 .
1
O-(Z) L+ eXp(—z) 1 ———
///
® Hyperbolic tangent § () fmm—— '
22) -1
tanh(z) = P22 =1 /
exp(22) +1 -1 p——— — (2
—— tanh(2)
ReLU(2)
o -2 t |
-4 -2 0 2 4

™

ReLU(z) = max(z 0)
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Non-Linear Activation Functions
® Recall our expression for the single layer neural network

U= gg('w;gl( Wiz + bl) + bg)

® One might ask why do we need a non-linear activation function g() in g( Wz + b)?

® Any sequence of linear layers can be equivalently represented with a single linear
layer, i.e.
Y= W1 WQ Wgﬂ?
=t We
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Neural Networks - Expressive Power

® Feed-forward neural nets with non-linear activation functions are universal function
approximators, i.e. they can approximate any function arbitrarily well.

® |n practice, you may need an exponentially large network.

® |f you can learn any function, this can just result in overfitting.
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Importance of Network Depth

® Afully connected neural network with one hidden layer is a universal function

approximator.

® This means it can model any sufficiently smooth function given a suitable number of

hidden units.

® However, both experimental and theoretical work have shown that deeper neural
networks (i.e. ones with more layers) are more effective than shallow ones.

® |n deeper networks, later layers can leverage the features learned by earlier ones.
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Neural Network Example - Input

® |nputz

@ THE UNIVERSIT

n

2

15

17

Non-Linear Classification with Neural Networks

® Here we revisit the non-linear binary

classification problem from earlier.

® We will use the following neural network with

two hidden layers:

U= g3(wy go(Wagr (Wiz+ b)) + by) +b3)

= fle) = f3(2(1(2)
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Neural Network Example - First Hidden Layer

® |nputz

® First hidden layer
hi = g1 (Wiz+ by)
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Neural Network Example - Second Hidden Layer

® |nputz

® First hidden layer
hi = g1 (Wiz+ by)

® Second hidden layer
hy = g2(Wahy + bs)
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Neural Network Example - Output Layer

® |nputz

® First hidden layer
hy = tanh( Wiz + by)

® Second hidden layer
h2 = tanh( Wth + b2)

® OQOutput
@Z O'(’wghg + bg)
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Neural Network Example - Output Layer

® |nputz

® First hidden layer
hi = gi(Wiz+ by)
® Second hidden layer
hy = g2(Wahy + bs)
® Output
¥ = gs(w]ha + b3)
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Transforming Features

Here we see the outputs from each layer of the network.
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Transforming Features

Now we can use a linear classifier on the final hidden features.
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Final Neural Network Predictions

® On the right we see the final network
predictions, colour-coded by predicted
class.

® Note, in this example we defined a
simple, and small, neural network for
ease of visualisation.

® Our network did not successfully classify
all the training data.
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Transforming Features

This is the same as previous, but we have colour coded each individual instance.
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Final Neural Network Predictions

® With a minor change to the structure of
the neural network, we can correctly
classify the training data.

® |n the example on the right we increased

the number of hidden units in the first
layer (from two to four).
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Training Neural Networks

Training Neural Networks

® The task of training a neural network involves finding the best parameters (i.e.
weights) for each unit.

® We will use a loss function £(60) to measure the disagreement between the model
prediction f(x) and the ground truth target y.

® During optimisation we will try to find the parameters that minimise the loss.

® We will take the gradient of the loss Vg £ and use gradient descent to update the
parameters.
0 —0-n-VoL
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Neural Network Parameters

® Recall that a multilayer neural network is a nested set of linear functions with
non-linear activations.

f@) = [1(... h(h(2))

® Each layer f1, has its own weight matrix W, and bias vector by..

® The concatenation of these terms form the model weights that need to be learned.

0=(Wi,b, Wy, by,..., W, br)
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Training Multilayer Neural Networks

® Hidden units make optimising the network weights more complicated as we do not
have ground truth targets for them.

® Fach hidden activity can affect many output units and can therefore have many
separate effects on the error.

28 29
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Backpropagation Backpropagation

® Thereis a recursive algorithm for computing the derivatives. It uses the chain rule by ® We can visualise the computations using a computation graph.

storing some intermediate terms. This is called backpropagation. ® The nodes represent all the inputs and computed quantities, and the edges

® \We make use of the layered structure of the network to compute the derivatives, represent which nodes are computed directly as a function of which other nodes *.
heading backwards from the output layer to the inputs.

® Consists of two main steps: L
o Aforward pass, in which we compute and store the values at all of the hidden units and
the network output.
o Abackward pass, in which we calculate the derivatives of each weight, starting at the end f
of the network, and reusing the previous computation as we move towards the start.

!Example adapted from Ren and MacKay: CSC 411.

30 C e uveRST 31
@ inform

Chain Rule of Calculus Backpropagation - Forward Pass

® Suppose we had two functions u(z) and v(x).

Yy
® Then y = u(v(x)) is a function of a function. l Jv \4

rT—> a—> h—> y—> [

® The chain rule of calculus gives us a way to expresses the derivative of the r 7
composition of two differentiable functions u(z) and v(z) in terms of their
derivatives.
. . a= Wix+ b
® For example, if we substitute s = v(x), thus y = u(s), and
h=g(a)
@ = ﬂ/f @ = W2h+ b2
dx  dsdzx 1
- 2
L =511y -yl
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Backpropagation - Backward Pass Convergence of Neural Networks

y ® For logistic regression, the loss function is conveniently convex. A convex function
oL . .
W 11 5% oL _ (v has just one minimum.
T—>a _><+ h _><—, Y — L Y ) ® Multilayer neural networks are non-convex, and gradient descent may get stuck in
ﬂ o< % N )TL, 9L _ % %Y _ %hT local minima during training and never find the global optimum.
oL oL oW,y Yy oW, Y

e b, ® |n practice this is not necessarily an issue and we can still apply gradient-based

oL oL oy oL . . . .
=== methods and can obtain good solutions for many practical problems of interest.

by ayaby oY

oL oLy
a= Wiz+b oh a_@,ﬁz
h= (0 oL _oLoh
. da  ohda
y—W2h+b2 oL _%aa _%w.r
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Hyperparameters Automatic Differentiation
® The backpropagation algorithm, which can be used to compute the gradient of a
e There are several elements of the network that you can change e.g. loss function applied to the output of the network wrt the parameters in each layer.
© The number of hidden layers. ® This gradient can then be used with any gradient-based optimisation, e.g. gradient

o The number of units in each hidden layer.
o The type of non-linear activation function e.g. ReLU, sigmoid, ...

descent.

® Manually computing these gradients for anything but small toy problems is too time

® There also are several aspects of the training procedure that can be changed e.g. consuming.
o The learning rate. ® [nstead, we can make use automatic differentiation (or autodiff). This is a set of
© The type of optimiser e.g. standard gradient descent, ... automatic techniques to evaluate the derivative of a function.

o How the weights are initialised.

© When tostop training. ® Many machine learning frameworks have autodiff functionality built in.
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Automatic Differentiation Example

[N

~ o v s w

2

i

£

#
d

X

8y

) #

The following is an example of using autodiff for binary logistic regression.

mport jax.numpy as jnp
rom jax import grad, nn

Define our loss function

ef nll_loss(X, y, w):
pred = nn.sigmoid(Xew)
loss_pos = (y==1)*jnp.log(pred)
loss_neg = (y==0)*jnp.log(1.0 - pred)
loss = -(loss_pos + loss_neg).mean()
return loss

Define our dataset, which has 3 dinstances
We have already appended a 1.0 to each row of X
= jnp.array([[1.0, 0.5,-0.35],
[1.0, -0.1, 0.1],
[1.0, -1.2, 1.0]])
= jnp.array([0.0, 0.0, 1.0])

This is our initial weight vector w
= jnp.array([0.6, -1.0, 1.0])
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Images as Tensors

®

# (i) Compute the gradient manually

# Here we use the derived expression

manual_grad = (nn.sigmoid(X@w) - y)@X

manual_grad *= (1.0/X.shape[0])

print(’Manual gradient’, jnp.round(manual_grad, 3))

# (i1) Compute the gradient automatically

# Evaluate the loss and compute the gradient
loss = nll_loss(X, y, w)

w_grad = grad(nll_loss, (2))(X, y, w)

print(’Auto gradient ’, jnp.round(w_grad, 3))

# We can take one step of gradient descent
learning_rate = 3.0
w_update = w - learning_rate*w_grad

® \We can represent images as matrices, where each entry stores the intensity value of

a given pixel.
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Alternative Network Architectures

Issues with Fully Connected Neural Networks

® Fully connected networks with high-dimensional inputs have a lot of model weights.

® This results in a very large number of model weights that have to be learned.

® Forexample, if our input was an image of size 100 x 100, this would require 10, 000
weights for each hidden unit in the first layer.
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Shift Invariance Shift Invariance

® Fully connected networks are sensitive to the position of the signal of interest in an ® Fully connected networks are sensitive to the position of the signal of interestin an
input image. input image.
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Shift Invariance Convolutional Filters
® Fully connected networks are sensitive to the position of the signal of interest in an ® Constrain each hidden unit to extract features by sharing weights across the input.
inputimage. ® Foranimage X and K x K weight matrix W (i.e. a filter) we compute the outputs as
[o] [o] [o] [o]
[ o] [ KK
% % i % hl] =g Z Z Wi, nTirm,jn b
(1 [1] 0] [1] m=1 n=1
o[1]ofo H o[o[1]o H
1(1(1]|0 o] o (0] 0]1(1]1 1] o [0] . . .
oTiloTo 2 0] X[ =5 oToTil0 Z o] X o] =2 ® The outputls.afeatfjre map, where ea'ch entry hy; is the local response of the filter
‘olo[o]0 % % olololo 2 % convolved with the image at that location.
8 % % % ® Multiple weight matrices can be used to produce multiple feature maps.
0] [0 o] [0]
0 0] 0] [0]
o [o] o [o]
X; W X, W
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Convolution

Convolution
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Convolutional Neural Network - Example

® A Convolutional Neural Network (CNN) consists of learnable convolutional filters and
non-learnable pooling layers.

® The pooling layers reduce the spatial dimensionality of the feature maps.

® For classification, at the output of the network, we have a fully connected layer
which predicts one of C'classes.

Input Image Features 1 Pooling 1 Features 2 Pooling 2 Flatten ~ Output

— =g

36x36x1 28x28x4 14x14x4 10x10%8 5x5x8 300 C
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Recurrent Neural Networks
® |n RNNs, the outputs y; are a function of the current input x; and the previous hidden
state hy_1.
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Recurrent Neural Networks

® Amodel for sequence data (e.g. time series).

o Different network architectures and recurrent units exist, e.g. long
short-term-memories (LSTMs).

® InaRNN, each input is processed sequentially, one item at a time.

® Pastinformation is retained through past hidden states.

50

Transformers

® Alternative, and more recent, approach for modelling sequential data.

® Unlike RNNs, Transformers process the entire input all at once.
o Thus training can be performed in parallel.

o They are also less susceptible to ‘forgetting’ information from the past, i.e. better suited to
capture long-range dependencies.

® Transformers have a special type of unit called a self-attention unit. This is used to
compute similarity scores between inputs in the input sequence.

® They can also be applied to other data types, e.g. images.
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Summary

® Artificial neural networks are a powerful non-linear modelling tool for classification
and regression.

® They are not biologically plausible models.

® The output of the hidden units are a new representation of the original input data.
This can be interpreted as learned features.

® Training makes use of the backpropagation algorithm to compute derivatives.

® Beyond standard fully connected networks, alternative architectures exist for
learning from structured input data (e.g. images, audio, text, ...).
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