

Applied Machine Learning (AML)

Clustering

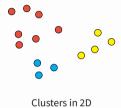
Oisin Mac Aodha • Siddharth N.

Outline

- What is clustering and why is it useful?
- What kinds are there and how are they characterised?
- Explore
 - K-Means
 - Hierarchical Clustering
- How do we evaluate clustering?

Clustering

• Discover the underlying structure of data



Clustering

- Discover the underlying structure of data
- What sub-groups exist in the data
 - # clusters, size, ...
 - o common properties within sub-group
 - o potential for further clustering

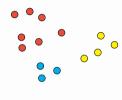
Clusters in 2D

Clustering

- Discover the underlying structure of data
- What sub-groups exist in the data
 - o # clusters, size, ...
 - common properties within sub-group
 - potential for further clustering

Applications

- discover classes / structure in an unsupervised manner
 - clustering images of handwritten digits (K=10)
 - finding phylogenetic trees using DNA
- dimensionality reduction: clusters ↔ "latent factors"
 - o use cluster id as representation
 - assume relevant characteristics reflected in cluster membership



Clusters in 2D

Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical

Flat: single group of clusters

Hierarchical: clusters at different levels

Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical

Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic

Monothetic: clustered based on common feature (e.g. hair colour)

Polythetic: clustered based on distance measure(s) over features

Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical

Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic

Monothetic: clustered based on common feature (e.g. hair colour)

Polythetic: clustered based on distance measure(s) over features

K-Means

K-Means

Characteristics

Hard: a point belongs to just one cluster

Flat: single level of clustering

Polythetic: distance-based similarity within clusters

K-Means

Characteristics

Hard: a point belongs to just one cluster

Flat: single level of clustering

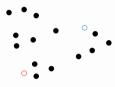
Polythetic: distance-based similarity within clusters

Idea

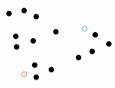
Ensure points closest to some special point end up in the same cluster

- Top-down approach
- Produces a partition of the data
- Requires defining a distance metric over points


```
 \begin{array}{lll} \textbf{Require:} & \mathcal{D}, K, \{x_1, \dots, x_N\} & \quad \text{$\models$ \# clusters, points} \\ \textbf{1:} & \{c_1, \dots, c_K\} \leftarrow \text{random initialisation $\models$ centroids of clusters} \\ \textbf{2:} & \quad \text{repeat} \\ \textbf{3:} & \quad \text{for } x_n \in \{x_1, \dots, x_N\} \text{ do} \\ \textbf{4:} & \quad c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k) & \quad \text{$\models$ find nearest centroid id} \\ \textbf{5:} & \quad c_k^* \leftarrow x_n & \quad \text{$\models$ assign point to cluster} \\ \textbf{6:} & \quad \text{for } c_k \in \{c_1, \dots, c_K\} \text{ do} \\ \textbf{7:} & \quad c_k = \frac{1}{N_k} \sum_{s \in S} x_n & \quad \text{$\models$ update cluster centroids} \\ \end{array}
```




```
 \begin{array}{lll} \textbf{Require:} & \mathcal{D}, K, \{x_1, \dots, x_N\} & \quad \text{$\flat$ \# clusters, points} \\ \textbf{1:} & \{c_1, \dots, c_K\} \leftarrow \text{random initialisation $\flat$ centroids of clusters} \\ \textbf{2:} & \quad \textbf{repeat} \\ \textbf{3:} & \quad \textbf{for } x_n \in \{x_1, \dots, x_N\} \ \textbf{do} \\ \textbf{4:} & \quad c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k) & \quad \textbf{$\flat$ find nearest centroid id} \\ \textbf{5:} & \quad c_k^* \leftarrow x_n & \quad \textbf{$\flat$ assign point to cluster} \\ \textbf{6:} & \quad \textbf{for } c_k \in \{c_1, \dots, c_K\} \ \textbf{do} \\ \textbf{7:} & \quad c_k = \frac{1}{N_k} \sum_{c_k} x_n & \quad \textbf{$\flat$ update cluster centroids} \\ \end{array}
```




```
 \begin{array}{lll} \textbf{Require:} & \mathcal{D}, K, \{\pmb{x}_1, \dots, \pmb{x}_N\} & \quad \texttt{$} \texttt{$\#$ clusters, points} \\ \textbf{1:} & \{\pmb{c}_1, \dots, \pmb{c}_K\} \leftarrow \texttt{random initialisation} \texttt{$$\texttt{$\lor$ centroids of clusters}$} \\ \textbf{2:} & \textbf{repeat} \\ \textbf{3:} & \textbf{for } \pmb{x}_n \in \{\pmb{x}_1, \dots, \pmb{x}_N\} \textbf{ do} \\ \textbf{4:} & \pmb{c}_k^* = \arg\min_{\pmb{c}_k} \mathcal{D}(\pmb{x}_n, \pmb{c}_k) & \texttt{$\lor$ find nearest centroid id} \\ \textbf{5:} & \pmb{c}_k^* \leftarrow \pmb{x}_n & & \texttt{$\backprime$ assign point to cluster} \\ \textbf{6:} & \textbf{for } \pmb{c}_k \in \{\pmb{c}_1, \dots, \pmb{c}_K\} \textbf{ do} \\ \textbf{7:} & \pmb{c}_k = \frac{1}{N_k} \sum_{n=1}^{\infty} \pmb{x}_n & \texttt{$\backprime$ update cluster centroids} \\ \end{array}
```



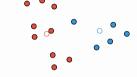
```
 \begin{array}{lll} \textbf{Require:} & \mathcal{D}, K, \{x_1, \dots, x_N\} & \quad \text{$\flat$ \# clusters, points} \\ \textbf{1:} & \{c_1, \dots, c_K\} \leftarrow \text{random initialisation $\flat$ centroids of clusters} \\ \textbf{2:} & \textbf{repeat} \\ \textbf{3:} & \textbf{for } x_n \in \{x_1, \dots, x_N\} \ \textbf{do} \\ \textbf{4:} & c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k) & \quad \text{$\flat$ find nearest centroid id} \\ \textbf{5:} & c_k^* \leftarrow x_n & \quad \quad \text{$\flat$ assign point to cluster} \\ \textbf{6:} & \textbf{for } c_k \in \{c_1, \dots, c_K\} \ \textbf{do} \\ \textbf{7:} & c_k = \frac{1}{N_k} \sum_{x_n \in \mathcal{X}_n} x_n & \quad \text{$\flat$ update cluster centroids} \\ \end{array}
```



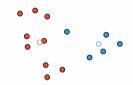
```
 \begin{array}{lll} \textbf{Require:} & \mathcal{D}, K, \{x_1, \dots, x_N\} & \quad \text{$\flat$ \# clusters, points} \\ \textbf{1:} & \{c_1, \dots, c_K\} \leftarrow \text{random initialisation $\flat$ centroids of clusters} \\ \textbf{2:} & \quad \textbf{repeat} \\ \textbf{3:} & \quad \textbf{for } x_n \in \{x_1, \dots, x_N\} \ \textbf{do} \\ \textbf{4:} & \quad c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k) & \quad \textbf{$\flat$ find nearest centroid id} \\ \textbf{5:} & \quad c_k^* \leftarrow x_n & \quad \textbf{$\flat$ assign point to cluster} \\ \textbf{6:} & \quad \textbf{for } c_k \in \{c_1, \dots, c_K\} \ \textbf{do} \\ \textbf{7:} & \quad c_k = \frac{1}{N_k} \sum_{c_k} x_n & \quad \textbf{$\flat$ update cluster centroids} \\ \end{array}
```



```
 \begin{array}{lll} \textbf{Require:} & \mathcal{D}, K, \{\pmb{x}_1, \dots, \pmb{x}_N\} & \quad \texttt{$} \texttt{$\#$ clusters, points} \\ \textbf{1:} & \{\pmb{c}_1, \dots, \pmb{c}_K\} \leftarrow \texttt{random initialisation} \texttt{$$\texttt{$\lor$ centroids of clusters}$} \\ \textbf{2:} & \textbf{repeat} \\ \textbf{3:} & \textbf{for } \pmb{x}_n \in \{\pmb{x}_1, \dots, \pmb{x}_N\} \textbf{ do} \\ \textbf{4:} & \pmb{c}_k^* = \arg\min_{\pmb{c}_k} \mathcal{D}(\pmb{x}_n, \pmb{c}_k) & \texttt{$\lor$ find nearest centroid id} \\ \textbf{5:} & \pmb{c}_k^* \leftarrow \pmb{x}_n & & \texttt{$\backprime$ assign point to cluster} \\ \textbf{6:} & \textbf{for } \pmb{c}_k \in \{\pmb{c}_1, \dots, \pmb{c}_K\} \textbf{ do} \\ \textbf{7:} & \pmb{c}_k = \frac{1}{N_k} \sum_{n=1}^{\infty} \pmb{x}_n & \texttt{$\backprime$ update cluster centroids} \\ \end{array}
```



```
 \begin{array}{lll} \textbf{Require:} & \mathcal{D}, K, \{x_1, \dots, x_N\} & \quad \text{$\flat$ \# clusters, points} \\ \textbf{1:} & \{c_1, \dots, c_K\} \leftarrow \text{random initialisation $\flat$ centroids of clusters} \\ \textbf{2:} & \textbf{repeat} \\ \textbf{3:} & \textbf{for } x_n \in \{x_1, \dots, x_N\} \ \textbf{do} \\ \textbf{4:} & c_k^* = \arg\min_{c_k} \mathcal{D}(x_n, c_k) & \quad \text{$\flat$ find nearest centroid id} \\ \textbf{5:} & c_k^* \leftarrow x_n & \quad \quad \text{$\flat$ assign point to cluster} \\ \textbf{6:} & \textbf{for } c_k \in \{c_1, \dots, c_K\} \ \textbf{do} \\ \textbf{7:} & c_k = \frac{1}{N_k} \sum_{x_n \in \mathcal{X}_n} x_n & \quad \text{$\flat$ update cluster centroids} \\ \end{array}
```



K-Means Properties

- Minimises aggregate intra-cluster distance: $V = \sum_{k} \sum_{x \in \mathcal{X}} \mathcal{D}(x_n, c_k)$
 - if $\mathcal{D}(x_n, c_k) = ||x_n c_k||_2^2$, i.e., Euclidean distance, then V is proportional to variance

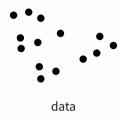
K-Means Properties

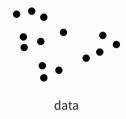
- ullet Minimises aggregate intra-cluster distance: $\mathit{V} = \sum_k \sum_{x_n o c_k} \mathcal{D}(x_n, c_k)$
 - if $\mathcal{D}(x_n, c_k) = ||x_n c_k||_2^2$, i.e., Euclidean distance, then V is proportional to variance
- Converges to *local* minimum
 - o different initialisations lead to different clustering results
 - o repeat several random initialisations and pick one with smallest aggregate distance

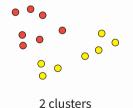
K-Means Properties

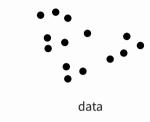
- ullet Minimises aggregate intra-cluster distance: $V = \sum_k \sum_{x_n o c_k} \mathcal{D}(m{x}_n, m{c}_k)$
 - if $\mathcal{D}(x_n, c_k) = ||x_n c_k||_2^2$, i.e., Euclidean distance, then V is proportional to variance
- Converges to *local* minimum
 - o different initialisations lead to different clustering results
 - o repeat several random initialisations and pick one with smallest aggregate distance

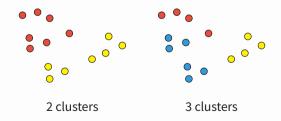
• 'Adjacent' points can end up in different clusters

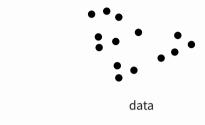


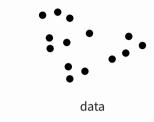


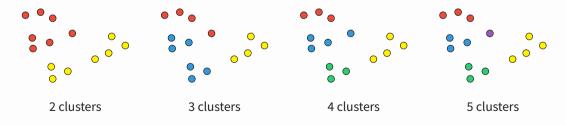












How many clusters does your data have?

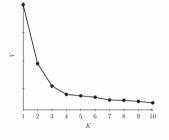
• Get (*K*) from class labels (e.g. digits 0...9)

- Get (*K*) from class labels (e.g. digits 0...9)
- Find an "appropriate" *K*: optimise for *V*

- Get (*K*) from class labels (e.g. digits 0...9)
- ullet Find an "appropriate" K: optimise for V
 - Run K-Means for K = 1, 2, ...; choose K with smallest V

- Get (K) from class labels (e.g. digits 0...9)
- Find an "appropriate" K: optimise for V
 - Run K-Means for K = 1, 2, ...; choose K with smallest V
 - Issue: What is V when K = N?
 - choose best K on validation data

- Get (*K*) from class labels (e.g. digits 0...9)
- ullet Find an "appropriate" K: optimise for V
 - Run K-Means for K = 1, 2, ...; choose K with smallest V
 - Issue: What is V when K = N?
 - choose best K on validation data
 - Choose visually from a elbow plot
 - point that maximises the 2^{nd} derivative of V



Colour Quantisation

• Original Image: 96,615 colours

Original

Colour Quantisation

- Original Image: 96,615 colours
- Quantised Image: 64 colours (K-Means)
 - \circ Replace pixel value $oldsymbol{x}_i$ with cluster centroid $oldsymbol{c}_k$ value

 $m{x}_i \in \mathbb{R}^3$ (pixel values in RGB) $m{\mathcal{D}}(m{x}_i,m{x}_j) = \|m{x}_i - m{x}_j\|_2^2$ K = 64

Original

K-Means Quantised

Figures: Scikit Learn: Colour Quantization using K-Means

Colour Quantisation

- Original Image: 96,615 colours
- Quantised Image: 64 colours (K-Means)
 - \circ Replace pixel value x_i with cluster centroid c_k value
- Quantised Image: 64 colours (Random)
 - Select random set of K pixels as "centroids"
 - \circ Replace pixel value x_i with nearest "centroid" value

$$m{x}_i \in \mathbb{R}^3$$
 (pixel values in RGB) $m{\mathcal{D}}(m{x}_i,m{x}_j) = \|m{x}_i - m{x}_j\|_2^2$ $K = 64$

Original

Random Quantised

Figures: Scikit Learn: Colour Quantization using K-Means

Clustering Handwritten Digits

• High-dimensional data

 $\boldsymbol{x} \in \mathbb{R}^{784}$

K-Means: Example

Clustering Handwritten Digits

- High-dimensional data
- Dimensionality reduction (e.g. PCA)

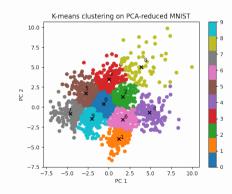
$$oldsymbol{x} \in \mathbb{R}^{784}$$
 $oldsymbol{e} \in \mathbb{R}^2$ (PCA)

K-Means: Example

Clustering Handwritten Digits

- High-dimensional data
- Dimensionality reduction (e.g. PCA)
- K-Means on embeddings

$$m{x} \in \mathbb{R}^{784}$$
 $m{e} \in \mathbb{R}^2$ (PCA) $m{\mathcal{D}}(m{x}_i, m{x}_j) = \|m{e}_i - m{e}_j\|_2^2$ $K = 10$



Choosing number of clusters

• Depends a lot on *granularity*

- Depends a lot on granularity
 - o data (e.g. satellite maps—how much does 1 pixel cover?)

- Depends a lot on granularity
 - data (e.g. satellite maps—how much does 1 pixel cover?)
 - o context—what do we care about? High vs. low level?

- Depends a lot on granularity
 - data (e.g. satellite maps—how much does 1 pixel cover?)
 - o context—what do we care about? High vs. low level?
- No magical algorithm to give you correct K

- Depends a lot on granularity
 - data (e.g. satellite maps—how much does 1 pixel cover?)
 - o context—what do we care about? High vs. low level?
- No magical algorithm to give you correct K

Choosing number of clusters

- Depends a lot on granularity
 - o data (e.g. satellite maps—how much does 1 pixel cover?)
 - context—what do we care about? High vs. low level?
- No magical algorithm to give you correct K

Find a hierarchy of structure

- Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)
- Lower levels: fine-grained (e.g. object parts; chair leg, table top, etc.)
- Stategies
 - Top-Down: start with everything in one cluster, then split recursively
 - Bottom-up: start with each item separately, then merge recursively

• Top-Down approach

- Top-Down approach
 - o perform K-Means on data

- Top-Down approach
 - o perform K-Means on data
 - \circ for each resulting cluster c_i , run K-Means within c_i

- Top-Down approach
 - o perform K-Means on data
 - \circ for each resulting cluster c_i , run K-Means within c_i
- Fast: recursive calls on successively smaller datasets

- Top-Down approach
 - o perform K-Means on data
 - \circ for each resulting cluster $oldsymbol{c}_i$, run K-Means within $oldsymbol{c}_i$
- Fast: recursive calls on successively smaller datasets
- Greedy: once cluster has been determined at top level; cannot change

Agglomerative Clustering

Characteristics

Hard: a point belongs to just one cluster

Hierarchical: multiple levels of clustering

Polythetic: distance-based similarity within clusters

Agglomerative Clustering

Characteristics

Hard: a point belongs to just one cluster

Hierarchical: multiple levels of clustering

Polythetic: distance-based similarity within clusters

Idea

Ensure "nearby" points end up in the same cluster

- Bottom-up approach
- Generates a dendrogram: hierarchical tree of clusters
- Requires defining a distance metric over clusters

 $\mathcal{D}(x_l,x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i,c_j)$ —distance between *clusters* of points

Require: $\mathcal{G}_{\mathcal{D}}, \{x_1, \ldots, x_N\}$

1:
$$C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$$

▶ initial clusters

2: repeat

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$

▶ find closest pair

4: $c_{i\cdot j} \leftarrow c_i^*, c_j^*$

merge into new cluster

5: $C = C \setminus \{c_i^*, c_i^*\}$

► remove pair of clusters

6: $C = C \cup \{c_{i \cdot j}\}$

▶ add merged cluster

7: until only one cluster remaining

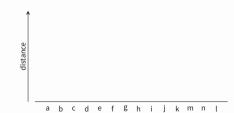
(a) (b)

· ·

g

h i

m n



 $\mathcal{D}(x_l,x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i,c_j)$ —distance between *clusters* of points

Require: $\mathcal{G}_{\mathcal{D}}, \{x_1, \dots, x_N\}$

1:
$$C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$$

▶ initial clusters

2: repeat

3: $c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$

▶ find closest pair

4: $c_{i\cdot j} \leftarrow c_i^*, c_j^*$

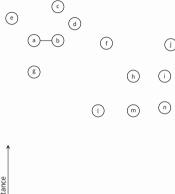
merge into new cluster

5: $C = C \setminus \{c_i^*, c_j^*\}$

► remove pair of clusters

6: $C = C \cup \{c_{i \cdot j}\}$

▶ add merged cluster



 $\mathcal{D}(x_l,x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i,c_j)$ —distance between *clusters* of points

Require: $\mathcal{G}_{\mathcal{D}}$, $\{x_1, \ldots, x_N\}$

1:
$$C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$$

▶ initial clusters

2: repeat

3: $c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$

⊳ find closest pair

4: $c_{i\cdot j} \leftarrow c_i^*, c_j^*$

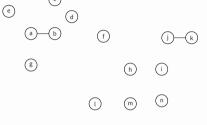
▶ merge into new cluster

5: $C = C \setminus \{c_i^*, c_i^*\}$

► remove pair of clusters

6: $C = C \cup \{c_{i\cdot j}\}$

▶ add merged cluster



 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

Require:
$$\mathcal{G}_{\mathcal{D}}$$
, $\{x_1, \ldots, x_N\}$

▶ points

1:
$$C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$$

▶ initial clusters

2: repeat

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$

▶ find closest pair

4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

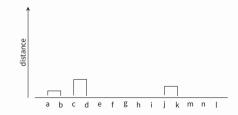
▶ merge into new cluster

 $C = C \setminus \{c_i^*, c_i^*\}$

▶ remove pair of clusters

 $C = C \cup \{c_{i \cdot j}\}$

▶ add merged cluster



 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

Require:
$$\mathcal{G}_{\mathcal{D}}, \{x_1, \ldots, x_N\}$$

▶ points

1:
$$C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$$

▶ initial clusters

2: repeat

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$

▶ find closest pair

4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

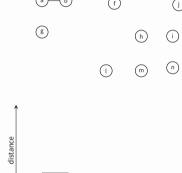
▶ merge into new cluster

 $C = C \setminus \{c_i^*, c_i^*\}$

▶ remove pair of clusters

 $C = C \cup \{c_{i \cdot j}\}$

▶ add merged cluster



 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

Require:
$$\mathcal{G}_{\mathcal{D}}, \{x_1, \ldots, x_N\}$$

1:
$$C = \{c_1, ..., c_N\} = \{\{x_1\}, ..., \{x_N\}\}\$$
 \triangleright initial clusters

2: repeat

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 $ightharpoonup$ fir

▶ find closest pair

▶ points

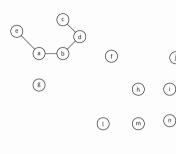
4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

▶ merge into new cluster ▶ remove pair of clusters

5:
$$C = C \setminus \{c_i^*, c_i^*\}$$

6:
$$C = C \cup \{c_{i \cdot j}\}$$

▶ add merged cluster



 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

Require: $G_{\mathcal{D}}, \{x_1, \ldots, x_N\}$

1:
$$C = \{c_1, ..., c_N\} = \{\{x_1\}, ..., \{x_N\}\}\$$
 \triangleright initial clusters

2: repeat

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 $ightharpoonup$ f

▶ find closest pair

▶ points

4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

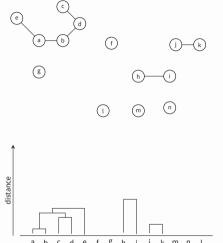
▶ merge into new cluster

5:
$$C = C \setminus \{c_i^*, c_i^*\}$$

▶ remove pair of clusters

 $C = C \cup \{c_{i \cdot j}\}$

▶ add merged cluster



 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

Require:
$${\cal G}_{\cal D}, \{x_1,\ldots,x_N\}$$

1:
$$C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$$

▶ initial clusters

▶ points

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$

▶ find closest pair

4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

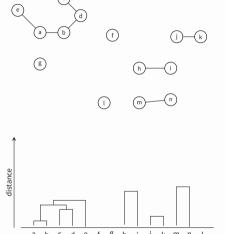
▶ merge into new cluster

 $C = C \setminus \{c_i^*, c_i^*\}$

▶ remove pair of clusters

 $C = C \cup \{c_{i \cdot j}\}$

▶ add merged cluster



 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

Require:
$$\mathcal{G}_{\mathcal{D}}, \{x_1, \dots, x_N\}$$
 \rightarrow points
1: $C = \{c_1, \dots, c_N\} = \{\{x_1\}, \dots, \{x_N\}\}$ \rightarrow initial clusters

2: repeat

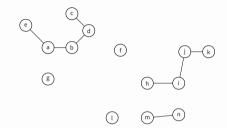
3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 $ightharpoonup$ find closest pair

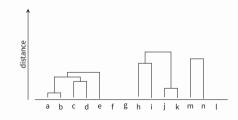
4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$
 > merge into new cluster
5: $C = C \setminus \{c_i^*, c_i^*\}$ > remove pair of clusters

5:
$$C = C \setminus \{c_i^*, c_i^*\}$$

7: until only one cluster remaining

 $C = C \cup \{c_{i \cdot j}\}$





 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

2: repeat

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 $ightharpoonup$ find closest pair

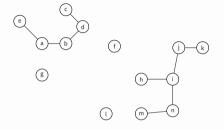
4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

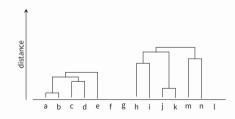
▶ merge into new cluster ▶ remove pair of clusters

5:
$$C = C \setminus \{c_i^*, c_i^*\}$$

6:
$$C = C \cup \{c_{i \cdot j}\}$$

▶ add merged cluster





 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

2: repeat

3:
$$c_i^*, c_j^* = \underset{c_i, c_j}{\arg\min} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 \rightarrow find

▶ find closest pair

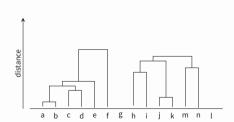
4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

▶ merge into new cluster ▶ remove pair of clusters

 $C = C \setminus \{c_i^*, c_i^*\}$

 $C = C \cup \{c_{i \cdot j}\}$

▶ add merged cluster



 $\mathcal{D}(x_l,x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i,c_j)$ —distance between *clusters* of points

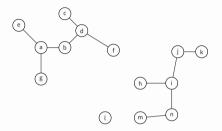
2: repeat

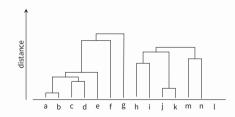
3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 $ightharpoonup$ find closest pair

4:
$$c_{i \cdot j} \leftarrow c_i^*, c_j^*$$
 $ightharpoonup$ merge into new cluster

5:
$$C = C \setminus \{c_*^*, c_*^*\}$$
 \rightarrow remove pair of clusters

6:
$$C = C \cup \{c_{i\cdot j}\}$$
 $ightharpoonup$ add merged cluster





 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

2: repeat

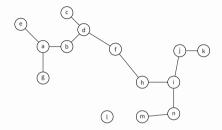
3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 $ightharpoonup$ find closest pair

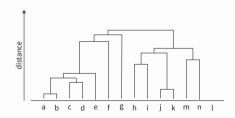
 $c_{i\cdot j} \leftarrow c_i^*, c_i^*$ ▶ merge into new cluster

5:
$$C = C \setminus \{c_i^*, c_i^*\}$$

▶ remove pair of clusters ▶ add merged cluster

6:
$$C = C \cup \{c_{i \cdot j}\}$$





 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

3:
$$c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$$
 $ightharpoonup$ find closest pair

4:
$$c_{i\cdot j} \leftarrow c_i^*, c_j^*$$

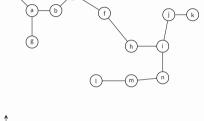
▶ merge into new cluster

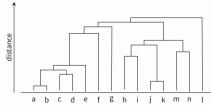
5:
$$C = C \setminus \{c_i^*, c_i^*\}$$

▶ remove pair of clusters

6:
$$C = C \cup \{c_{i \cdot j}\}$$

▶ add merged cluster





 $\mathcal{D}(x_l, x_m)$ —distance between *points* $\mathcal{G}_{\mathcal{D}}(c_i, c_i)$ —distance between *clusters* of points

- $c_i^*, c_j^* = \operatorname*{arg\,min}_{c_i, c_j} \mathcal{G}_{\mathcal{D}}(c_i, c_j)$
- ▶ find closest pair

 $c_{i \cdot j} \leftarrow c_i^*, c_i^*$

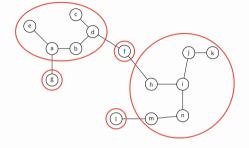
▶ merge into new cluster

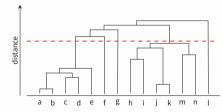
 $C = C \setminus \{c_i^*, c_i^*\}$

▶ remove pair of clusters

 $C = C \cup \{c_{i \cdot j}\}$

- ▶ add merged cluster
- 7: until only one cluster remaining



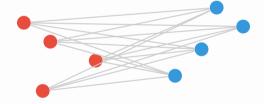


Single Link

$$\mathcal{G}_{\mathcal{D}}(\, oldsymbol{c}_i, \, oldsymbol{c}_j) = \min_{egin{subarray}{c} x_{i,l} \in oldsymbol{c}_i \ x_{j,m} \in oldsymbol{c}_j \ \end{array}} \mathcal{D}(\, oldsymbol{x}_{i,l}, \, oldsymbol{x}_{j,m})$$

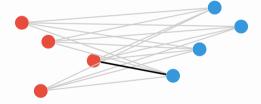
Single Link

$$\mathcal{G}_{\mathcal{D}}(\mathbf{\textit{c}}_{i}, \mathbf{\textit{c}}_{j}) = \min_{\substack{\mathbf{\textit{x}}_{i,l} \in \mathbf{\textit{c}}_{i} \ \mathbf{\textit{x}}_{j,m} \in \mathbf{\textit{c}}_{j}}} \mathcal{D}(\mathbf{\textit{x}}_{i,l}, \mathbf{\textit{x}}_{j,m})$$



Single Link

$$\mathcal{G}_{\mathcal{D}}(\,oldsymbol{c}_i,\,oldsymbol{c}_j) = \min_{egin{array}{c} oldsymbol{x}_{i,l} \in oldsymbol{c}_i \ oldsymbol{x}_{j,m} \in oldsymbol{c}_j \ \end{array}} \mathcal{D}(\,oldsymbol{x}_{i,l},\,oldsymbol{x}_{j,m})$$

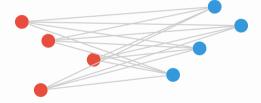


Complete Link

$$\mathcal{G}_{\mathcal{D}}(\textit{\textbf{c}}_{\textit{i}}, \textit{\textbf{c}}_{\textit{j}}) = \max_{\substack{\textit{\textbf{x}}_{i,l} \in \textit{\textbf{c}}_{i} \\ \textit{\textbf{x}}_{\textit{j},m} \in \textit{\textbf{c}}_{\textit{j}}}} \mathcal{D}(\textit{\textbf{x}}_{\textit{i},l}, \textit{\textbf{x}}_{\textit{j},m})$$

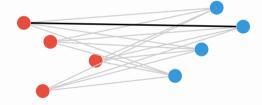
Complete Link

$$\mathcal{G}_{\mathcal{D}}(\boldsymbol{c}_i, \boldsymbol{c}_j) = \max_{\substack{oldsymbol{x}_{i,l} \in oldsymbol{c}_i \ oldsymbol{x}_{j,m} \in oldsymbol{c}_j}} \mathcal{D}(oldsymbol{x}_{i,l}, oldsymbol{x}_{j,m})$$



Complete Link

$$\mathcal{G}_{\mathcal{D}}(\mathbf{\textit{c}}_i, \mathbf{\textit{c}}_j) = \max_{\substack{m{x}_{i,l} \in \mathbf{\textit{c}}_i \ m{x}_{j,m} \in \mathbf{\textit{c}}_j}} \mathcal{D}(\mathbf{\textit{x}}_{i,l}, \mathbf{\textit{x}}_{j,m})$$

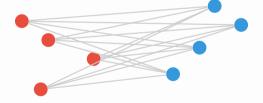


Average Link

$$\mathcal{G}_{\mathcal{D}}(\boldsymbol{c}_i, \boldsymbol{c}_j) = rac{1}{|\boldsymbol{c}_i| \, |\boldsymbol{c}_j|} \sum_{\substack{\boldsymbol{x}_{i,l} \in \boldsymbol{c}_i \ \boldsymbol{x}_{j,m} \in \boldsymbol{c}_j}} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{j,m})$$

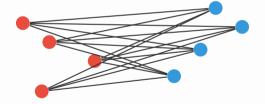
Average Link

$$\mathcal{G}_{\mathcal{D}}(\boldsymbol{c}_i, \boldsymbol{c}_j) = rac{1}{|\boldsymbol{c}_i| \, |\boldsymbol{c}_j|} \sum_{\substack{\boldsymbol{x}_{i,l} \in \boldsymbol{c}_i \ \boldsymbol{x}_{j,m} \in \boldsymbol{c}_j}} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{j,m})$$



Average Link

$$\mathcal{G}_{\mathcal{D}}(\boldsymbol{c}_i, \boldsymbol{c}_j) = rac{1}{|\boldsymbol{c}_i| \, |\boldsymbol{c}_j|} \sum_{\substack{\boldsymbol{x}_{i,l} \in \boldsymbol{c}_i \ \boldsymbol{x}_{j,m} \in \boldsymbol{c}_j}} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{j,m})$$



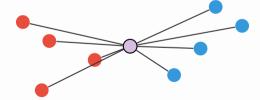
Ward's Method

$$ar{oldsymbol{x}}_{ij} = rac{1}{|oldsymbol{c}_{ij}|} \sum_{oldsymbol{x}_l \in oldsymbol{c}_{ij}} oldsymbol{x}_l \qquad \qquad (oldsymbol{c}_{ij} = oldsymbol{c}_i \cup oldsymbol{c}_j) \ \mathcal{G}_{\mathcal{D}}(oldsymbol{c}_i, oldsymbol{c}_j) = rac{1}{|oldsymbol{c}_{ij}|} \sum_{oldsymbol{x}_l \in oldsymbol{c}_{ij}} oldsymbol{D}(oldsymbol{x}_l, ar{oldsymbol{x}}_{ij}) = rac{1}{|oldsymbol{c}_{ij}|} \sum_{oldsymbol{x}_l \in oldsymbol{c}_{ij}} \|oldsymbol{x}_l - ar{oldsymbol{x}}_{ij}\|^2$$

Ward's Method

$$\bar{\boldsymbol{x}}_{ij} = \frac{1}{|\boldsymbol{c}_{ij}|} \sum_{\boldsymbol{x}_l \in \boldsymbol{c}_{ij}} \boldsymbol{x}_l \qquad (\boldsymbol{c}_{ij} = \boldsymbol{c}_i \cup \boldsymbol{c}_j)$$

$$\mathcal{G}_{\mathcal{D}}(\boldsymbol{c}_i, \boldsymbol{c}_j) = \frac{1}{|\boldsymbol{c}_{ij}|} \sum_{\boldsymbol{x}_l \in \boldsymbol{c}_{ij}} \mathcal{D}(\boldsymbol{x}_l, \bar{\boldsymbol{x}}_{ij}) = \frac{1}{|\boldsymbol{c}_{ij}|} \sum_{\boldsymbol{x}_l \in \boldsymbol{c}_{ij}} ||\boldsymbol{x}_l - \bar{\boldsymbol{x}}_{ij}||^2$$



Unified Formulation

Lance-Williams Algorithm

- ullet When merging two clusters to get $c_{i\cdot j}$
- Need to compute updated distances to all other clusters

Unified Formulation

Lance-Williams Algorithm

- ullet When merging two clusters to get $oldsymbol{c}_{i\cdot j}$
- Need to compute updated distances to all other clusters

For each remaining cluster c_k , denoting $G_{i,j} = \mathcal{G}_{\mathcal{D}}(c_i, c_j)$

$$G_{k,i\cdot j} = \alpha_i G_{k,i} + \alpha_j G_{k,j} + \beta G_{i,j} + \gamma |G_{k,i} - G_{k,j}|$$

Unified Formulation

Lance-Williams Algorithm

- ullet When merging two clusters to get $oldsymbol{c}_{i\cdot j}$
- Need to compute updated distances to all other clusters

For each remaining cluster c_k , denoting $G_{i,j} = \mathcal{G}_{\mathcal{D}}(c_i, c_j)$

$$G_{k,i\cdot j} = \alpha_i G_{k,i} + \alpha_j G_{k,j} + \beta G_{i,j} + \gamma |G_{k,i} - G_{k,j}|$$

Method	$lpha_i$	$lpha_j$	β	γ
Single Link	0.5	0.5	0	-0.5
Complete Link	0.5	0.5	0	0.5
Average Link	$rac{ c_i }{ c_i + c_j }$	$rac{ c_j }{ c_i + c_j }$	0	0
Ward's Method	$\frac{ c_i + c_k }{ c_i + c_j + c_k }$	$rac{ c_i + c_j }{ c_j + c_k } \ \overline{ c_i + c_j + c_k }$	$rac{- c_k }{ c_i + c_j + c_k }$	0

Extrinsic

Helps solve downstream task

- Quantisation: represent data with cluster features
 - colour quantisation—use centroid value
 - feature extraction—use cluster index

Extrinsic

Helps solve downstream task

- Quantisation: represent data with cluster features
 - colour quantisation—use centroid value
 - feature extraction—use cluster index
- Partition: treat clusters as different datasets
 - train separate classifiers for each sub-group
 - e.g. MNIST 1 vs. not 1; 2 vs. not 2 ...

Extrinsic

Helps solve downstream task

- Quantisation: represent data with cluster features
 - colour quantisation—use centroid value
 - o feature extraction—use cluster index
- Partition: treat clusters as different datasets
 - train separate classifiers for each sub-group
 - e.g. MNIST 1 vs. not 1; 2 vs. not 2 ...
- Key: Does it help perform task better?

Intrinsic

Helps understand qualitative makeup of data

- Unsupervised: measure how well-separated clusters are
 - o compare intra-cluster distances to inter-cluster distances
 - e.g. silhouette scores

Intrinsic

Helps understand qualitative makeup of data

- Unsupervised: measure how well-separated clusters are
 - o compare intra-cluster distances to inter-cluster distances
 - e.g. silhouette scores
- Supervised: measure alignment of clusters to known labels
 - can treat as evaluation of classification
 - o reason in terms of pairs belonging to cluster / label
 - o issue: # cluster ≠ # labels

Intrinsic

Helps understand qualitative makeup of data

- Unsupervised: measure how well-separated clusters are
 - compare intra-cluster distances to inter-cluster distances
 - e.g. silhouette scores
- Supervised: measure alignment of clusters to known labels
 - can treat as evaluation of classification
 - reason in terms of pairs belonging to cluster / label
 - o issue: # cluster ≠ # labels
- Human: compare judgements to humans on exemplars
 - o ask human if pair x_i , x_i belong together
 - o compute match between human judgements and predictions: F1-score, κ , etc.

In the absence of labels, or any other external measure of utility, can compute a generic measure of how well-clustered the data is.

Silhouette Score

Let data point $x_l \in c_i$ be denoted $x_{i,l}$, then

In the absence of labels, or any other external measure of utility, can compute a generic measure of how well-clustered the data is.

Silhouette Score

Let data point $x_l \in c_i$ be denoted $x_{i,l}$, then

$$a_l = \frac{1}{|\boldsymbol{c}_i| - 1} \sum_{\substack{\boldsymbol{x}_{i,m} \in \boldsymbol{c}_i \\ m \neq l}} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{i,m})$$

mean distance within cluster

In the absence of labels, or any other external measure of utility, can compute a generic measure of how well-clustered the data is.

Silhouette Score

Let data point $x_l \in c_i$ be denoted $x_{i,l}$, then

$$a_{l} = \frac{1}{|\boldsymbol{c}_{i}| - 1} \sum_{\substack{\boldsymbol{x}_{i,m} \in \boldsymbol{c}_{i} \\ m \neq l}} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{i,m})$$

mean distance within cluster

$$b_l = \min_{j \neq i} \frac{1}{|\boldsymbol{c}_j|} \sum_{\boldsymbol{x}_{j,m} \in \boldsymbol{c}_j} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{j,m})$$

mean distance with nearest cluster

In the absence of labels, or any other external measure of utility, can compute a generic measure of how well-clustered the data is.

Silhouette Score

Let data point $x_l \in c_i$ be denoted $x_{i,l}$, then

$$a_l = \frac{1}{|c_i| - 1} \sum_{\substack{x_{i,m} \in c_i \\ m \neq l}} \mathcal{D}(x_{i,l}, x_{i,m})$$

mean distance within cluster

mean distance with nearest cluster

 $b_l = \min_{j \neq i} \frac{1}{|\boldsymbol{c}_i|} \sum_{\boldsymbol{c} \in \mathcal{C}_i} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{j,m})$

$$s_l = \frac{b_l - a_l}{\max\{a_l, b_l\}} \quad |c_i| > 1$$

In the absence of labels, or any other external measure of utility, can compute a generic measure of how well-clustered the data is.

Silhouette Score

Let data point $x_l \in c_i$ be denoted $x_{i,l}$, then

$$a_l = \frac{1}{|c_i| - 1} \sum_{\substack{x_{i,m} \in c_i \\ m \neq l}} \mathcal{D}(x_{i,l}, x_{i,m})$$

mean distance within cluster

$$s_l = \frac{b_l - a_l}{\max\{a_l, b_l\}} \quad |c_i| > 1$$

$$b_l = \min_{j \neq i} \frac{1}{|\boldsymbol{c}_j|} \sum_{\boldsymbol{x}_{j,m} \in \boldsymbol{c}_j} \mathcal{D}(\boldsymbol{x}_{i,l}, \boldsymbol{x}_{j,m})$$

mean distance with nearest cluster

$$s = \frac{1}{N} \sum_{l=1}^{N} s_l \qquad -1 \le s \le 1$$

Issue: Alignment

Clustering produces clusters $C = \{c_1, ..., c_U\}$

Issue: Alignment

Clustering produces clusters $C = \{c_1, ..., c_U\}$

Labels induce reference clusters $\mathcal{R} = \{r_1, \dots, r_V\}$

Issue: Alignment

Clustering produces clusters $C = \{c_1, ..., c_U\}$ Labels induce reference clusters $\mathcal{R} = \{r_1, ..., r_V\}$

• if U = V

Issue: Alignment

- if U = V
 - still cannot compare directly—permutation unknown!

Issue: Alignment

- if U = V
 - still cannot compare directly—permutation unknown!
 - which u corresponds to which v?

Issue: Alignment

- if U = V
 - still cannot compare directly—permutation unknown!
 - which u corresponds to which v?
 - if u ↔ v matching known standard measures: accuracy, F1-score, etc.

Issue: Alignment

- if U = V
 - still cannot compare directly—permutation unknown!
 - which u corresponds to which v?
 - if u ↔ v matching known standard measures: accuracy, F1-score, etc.
- if $U \neq V$

Issue: Alignment

- if U = V
 - still cannot compare directly—permutation unknown!
 - which u corresponds to which v?
 - if u ↔ v matching known standard measures: accuracy, F1-score, etc.
- if $U \neq V$
 - need to also find best alignment

Issue: Alignment

- if U = V
 - still cannot compare directly—permutation unknown!
 - which u corresponds to which v?
 - if u ↔ v matching known standard measures: accuracy, F1-score, etc.
- if $U \neq V$
 - need to also find best alignment
 - o can have multiple $c_u \rightarrow same r_v$

Issue: Alignment

- if U = V
 - still cannot compare directly—permutation unknown!
 - which u corresponds to which v?
 - if u ↔ v matching known standard measures: accuracy, F1-score, etc.
- if $U \neq V$
 - need to also find best alignment
 - o can have multiple $c_u \rightarrow same r_v$
 - o can have multiple $r_v \rightarrow same c_u$

Key Idea: Evaluate relationship between *pairs* of data points ${m x}_l$, ${m x}_m$

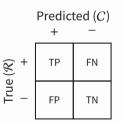
Rand Index (RI)

- +: x_l , x_m are in the same cluster
- $-: x_l, x_m$ are in different clusters

Key Idea: Evaluate relationship between *pairs* of data points x_b x_m

Rand Index (RI)

- $+: x_l, x_m$ are in the same cluster
- ullet $-: oldsymbol{x}_l, oldsymbol{x}_m$ are in different clusters



$$RI = \frac{TP + TN}{TP + TN + FP + FN}$$
= Accuracy!

Issue: Expected value of RI of two *random* partitions $\neq 0$ (or any constant)

Issue: Expected value of RI of two *random* partitions $\neq 0$ (or any constant)

Adjusted Rand Index (ARI)

	$oldsymbol{c}_1$			$oldsymbol{c}_U$	
$oldsymbol{r}_1$	N_{11}	N_{12}		N_{1U}	a_1
\boldsymbol{r}_2	N_{21}	N_{22}		N_{2U}	a_2
÷	÷	÷	٠.	÷	i :
$oldsymbol{r}_V$	N_{V1}	N_{V2}		$egin{array}{c} N_{1U} \ N_{2U} \ dots \ N_{VU} \end{array}$	a_V
				b_U	

$$N_{ij} = |\boldsymbol{r}_i \cap \boldsymbol{c}_j| \quad \binom{N}{2} = \frac{N(N-1)}{2}$$

Issue: Expected value of RI of two *random* partitions $\neq 0$ (or any constant)

Adjusted Rand Index (ARI)

$$N_{ij} = |\boldsymbol{r}_i \cap \boldsymbol{c}_j| \quad \binom{N}{2} = \frac{N(N-1)}{2}$$

$$\mathsf{TP} = \sum_{ij} inom{N_{ij}}{2}$$

Expected RI =
$$\frac{1}{\binom{N}{2}} \left[\sum_{v} \binom{a_v}{2} \cdot \sum_{u} \binom{b_u}{2} \right]$$

$$\operatorname{Max}\operatorname{RI} = \frac{1}{2}\left[\sum_v \binom{a_v}{2} + \sum_u \binom{b_u}{2}\right]$$

$$ARI = \frac{TP - Expected RI}{Max RI - Expected RI}$$

• Clustering: Means of discovering structure / sub-groups in data

- Clustering: Means of discovering structure / sub-groups in data
- K-Means
 - o Hard; Flat; Polythetic
 - Requires knowing K; search for best K
 - o Fast; Iterative; Local Minima

- Clustering: Means of discovering structure / sub-groups in data
- K-Means
 - Hard; Flat; Polythetic
 - Requires knowing K; search for best K
 - Fast: Iterative: Local Minima
- Hierarchical Clustering
 - Hard; Hierarchical; Polythetic
 - Top-Down: Hierarchical K-Means
 - Bottom-Up: Agglomerative Clustering

 - o multiple variants: single, complete, etc.

- Clustering: Means of discovering structure / sub-groups in data
- K-Means
 - o Hard; Flat; Polythetic
 - Requires knowing K; search for best K
 - o Fast; Iterative; Local Minima
- Hierarchical Clustering
 - o Hard; Hierarchical; Polythetic
 - o Top-Down: Hierarchical K-Means
 - o Bottom-Up: Agglomerative Clustering
 - o multiple variants: single, complete, etc.
- Evaluation
 - Unsupervised, Supervised, and Human-judgement driven

