

 Applied Machine Learning (AML)
Clustering

Oisin Mac Aodha • Siddharth N.

Outline

• What is clustering and why is it useful?

• What kinds are there and how are they characterised?

• Explore
◦ K‑Means
◦ Hierarchical Clustering

• How do we evaluate clustering?

Clustering
• Discover the underlying structure of data

• What sub‑groups exist in the data
◦ # clusters, size, …
◦ common properties within sub‑group
◦ potential for further clustering

Applications
• discover classes / structure in an unsupervised manner
◦ clustering images of handwritten digits (K=10)
◦ finding phylogenetic trees using DNA

• dimensionality reduction: clusters↔ “latent factors”
◦ use cluster id as representation
◦ assume relevant characteristics reflected in cluster membership

Clusters in 2D

Clustering
• Discover the underlying structure of data

• What sub‑groups exist in the data
◦ # clusters, size, …
◦ common properties within sub‑group
◦ potential for further clustering

Applications
• discover classes / structure in an unsupervised manner
◦ clustering images of handwritten digits (K=10)
◦ finding phylogenetic trees using DNA

• dimensionality reduction: clusters↔ “latent factors”
◦ use cluster id as representation
◦ assume relevant characteristics reflected in cluster membership

Clusters in 2D

Clustering
• Discover the underlying structure of data

• What sub‑groups exist in the data
◦ # clusters, size, …
◦ common properties within sub‑group
◦ potential for further clustering

Applications
• discover classes / structure in an unsupervised manner
◦ clustering images of handwritten digits (K=10)
◦ finding phylogenetic trees using DNA

• dimensionality reduction: clusters↔ “latent factors”
◦ use cluster id as representation
◦ assume relevant characteristics reflected in cluster membership

Clusters in 2D

Features of Clustering Algorithms
Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical
Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic
Monothetic: clustered based on common feature (e.g. hair colour)

Polythetic: clustered based on distance measure(s) over features

Features of Clustering Algorithms
Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical
Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic
Monothetic: clustered based on common feature (e.g. hair colour)

Polythetic: clustered based on distance measure(s) over features

Features of Clustering Algorithms
Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical
Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic
Monothetic: clustered based on common feature (e.g. hair colour)

Polythetic: clustered based on distance measure(s) over features

Features of Clustering Algorithms
Hard vs. Soft

Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical
Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic
Monothetic: clustered based on common feature (e.g. hair colour)

Polythetic: clustered based on distance measure(s) over features

K-Means

K-Means
Characteristics

Hard: a point belongs to just one cluster

Flat: single level of clustering

Polythetic: distance‑based similarity within clusters

Idea
Ensure points closest to some special point end up in the same cluster
• Top‑down approach

• Produces a partition of the data

• Requires defining a distance metric over points

K-Means
Characteristics

Hard: a point belongs to just one cluster

Flat: single level of clustering

Polythetic: distance‑based similarity within clusters

Idea
Ensure points closest to some special point end up in the same cluster
• Top‑down approach

• Produces a partition of the data

• Requires defining a distance metric over points

K-Means Algorithm

Require: D,K, {x1, . . . , xN} ⊲ # clusters, points
1: {c1, . . . , cK} ← random initialisation ⊲ centroids of clusters
2: repeat
3: for xn ∈ {x1, . . . , xN} do
4: c∗k = argminck D(xn, ck) ⊲ find nearest centroid id
5: c∗k ← xn ⊲ assign point to cluster

6: for ck ∈ {c1, . . . , cK} do
7: ck =

1
Nk

∑
xn→ck

xn ⊲ update cluster centroids

8: until cluster assignments do not change

K-Means Algorithm

Require: D,K, {x1, . . . , xN} ⊲ # clusters, points
1: {c1, . . . , cK} ← random initialisation ⊲ centroids of clusters
2: repeat
3: for xn ∈ {x1, . . . , xN} do
4: c∗k = argminck D(xn, ck) ⊲ find nearest centroid id
5: c∗k ← xn ⊲ assign point to cluster

6: for ck ∈ {c1, . . . , cK} do
7: ck =

1
Nk

∑
xn→ck

xn ⊲ update cluster centroids

8: until cluster assignments do not change

K-Means Algorithm

Require: D,K, {x1, . . . , xN} ⊲ # clusters, points
1: {c1, . . . , cK} ← random initialisation ⊲ centroids of clusters
2: repeat
3: for xn ∈ {x1, . . . , xN} do
4: c∗k = argminck D(xn, ck) ⊲ find nearest centroid id
5: c∗k ← xn ⊲ assign point to cluster

6: for ck ∈ {c1, . . . , cK} do
7: ck =

1
Nk

∑
xn→ck

xn ⊲ update cluster centroids

8: until cluster assignments do not change

K-Means Algorithm

Require: D,K, {x1, . . . , xN} ⊲ # clusters, points
1: {c1, . . . , cK} ← random initialisation ⊲ centroids of clusters
2: repeat
3: for xn ∈ {x1, . . . , xN} do
4: c∗k = argminck D(xn, ck) ⊲ find nearest centroid id
5: c∗k ← xn ⊲ assign point to cluster

6: for ck ∈ {c1, . . . , cK} do
7: ck =

1
Nk

∑
xn→ck

xn ⊲ update cluster centroids

8: until cluster assignments do not change

K-Means Algorithm

Require: D,K, {x1, . . . , xN} ⊲ # clusters, points
1: {c1, . . . , cK} ← random initialisation ⊲ centroids of clusters
2: repeat
3: for xn ∈ {x1, . . . , xN} do
4: c∗k = argminck D(xn, ck) ⊲ find nearest centroid id
5: c∗k ← xn ⊲ assign point to cluster

6: for ck ∈ {c1, . . . , cK} do
7: ck =

1
Nk

∑
xn→ck

xn ⊲ update cluster centroids

8: until cluster assignments do not change

K-Means Algorithm

Require: D,K, {x1, . . . , xN} ⊲ # clusters, points
1: {c1, . . . , cK} ← random initialisation ⊲ centroids of clusters
2: repeat
3: for xn ∈ {x1, . . . , xN} do
4: c∗k = argminck D(xn, ck) ⊲ find nearest centroid id
5: c∗k ← xn ⊲ assign point to cluster

6: for ck ∈ {c1, . . . , cK} do
7: ck =

1
Nk

∑
xn→ck

xn ⊲ update cluster centroids

8: until cluster assignments do not change

K-Means Algorithm

Require: D,K, {x1, . . . , xN} ⊲ # clusters, points
1: {c1, . . . , cK} ← random initialisation ⊲ centroids of clusters
2: repeat
3: for xn ∈ {x1, . . . , xN} do
4: c∗k = argminck D(xn, ck) ⊲ find nearest centroid id
5: c∗k ← xn ⊲ assign point to cluster

6: for ck ∈ {c1, . . . , cK} do
7: ck =

1
Nk

∑
xn→ck

xn ⊲ update cluster centroids

8: until cluster assignments do not change

K-Means Properties
• Minimises aggregate intra‑cluster distance: V =

∑
k

∑
xn→ck

D(xn, ck)

◦ ifD(xn, ck) = ‖xn − ck‖22, i.e., Euclidean distance, then V is proportional to variance

• Converges to localminimum

◦ different initialisations lead to different clustering results
◦ repeat several random initialisations and pick one with smallest aggregate distance

• ‘Adjacent’ points can end up in different clusters

K-Means Properties
• Minimises aggregate intra‑cluster distance: V =

∑
k

∑
xn→ck

D(xn, ck)

◦ ifD(xn, ck) = ‖xn − ck‖22, i.e., Euclidean distance, then V is proportional to variance

• Converges to localminimum
◦ different initialisations lead to different clustering results
◦ repeat several random initialisations and pick one with smallest aggregate distance

• ‘Adjacent’ points can end up in different clusters

K-Means Properties
• Minimises aggregate intra‑cluster distance: V =

∑
k

∑
xn→ck

D(xn, ck)

◦ ifD(xn, ck) = ‖xn − ck‖22, i.e., Euclidean distance, then V is proportional to variance

• Converges to localminimum
◦ different initialisations lead to different clustering results
◦ repeat several random initialisations and pick one with smallest aggregate distance

• ‘Adjacent’ points can end up in different clusters

Estimating Number of Clusters

data

2 clusters 3 clusters 4 clusters 5 clusters

Estimating Number of Clusters

data

2 clusters

3 clusters 4 clusters 5 clusters

Estimating Number of Clusters

data

2 clusters 3 clusters

4 clusters 5 clusters

Estimating Number of Clusters

data

2 clusters 3 clusters 4 clusters

5 clusters

Estimating Number of Clusters

data

2 clusters 3 clusters 4 clusters 5 clusters

Estimating Number of Clusters

Howmany clusters does your data have?
• Get (K) from class labels (e.g. digits 0…9)

• Find an “appropriate” K: optimise for V

◦ Run K‑Means for K = 1, 2, . . .; choose K with smallest V
◦ Issue: What is V when K = N ?

– choose best K on validation data

◦ Choose visually from a elbow plot
– point that maximises the 2nd derivative of V

1 2 3 4 5 6 7 8 9 10
K

V

Estimating Number of Clusters

Howmany clusters does your data have?
• Get (K) from class labels (e.g. digits 0…9)

• Find an “appropriate” K: optimise for V

◦ Run K‑Means for K = 1, 2, . . .; choose K with smallest V
◦ Issue: What is V when K = N ?

– choose best K on validation data

◦ Choose visually from a elbow plot
– point that maximises the 2nd derivative of V

1 2 3 4 5 6 7 8 9 10
K

V

Estimating Number of Clusters

Howmany clusters does your data have?
• Get (K) from class labels (e.g. digits 0…9)

• Find an “appropriate” K: optimise for V
◦ Run K‑Means for K = 1, 2, . . .; choose K with smallest V

◦ Issue: What is V when K = N ?
– choose best K on validation data

◦ Choose visually from a elbow plot
– point that maximises the 2nd derivative of V

1 2 3 4 5 6 7 8 9 10
K

V

Estimating Number of Clusters

Howmany clusters does your data have?
• Get (K) from class labels (e.g. digits 0…9)

• Find an “appropriate” K: optimise for V
◦ Run K‑Means for K = 1, 2, . . .; choose K with smallest V
◦ Issue: What is V when K = N ?

– choose best K on validation data

◦ Choose visually from a elbow plot
– point that maximises the 2nd derivative of V

1 2 3 4 5 6 7 8 9 10
K

V

Estimating Number of Clusters

Howmany clusters does your data have?
• Get (K) from class labels (e.g. digits 0…9)

• Find an “appropriate” K: optimise for V
◦ Run K‑Means for K = 1, 2, . . .; choose K with smallest V
◦ Issue: What is V when K = N ?

– choose best K on validation data

◦ Choose visually from a elbow plot
– point that maximises the 2nd derivative of V

1 2 3 4 5 6 7 8 9 10
K

V

K-Means: Example

Colour Quantisation
• Original Image: 96,615 colours

• Quantised Image: 64 colours (K‑Means)
◦ Replace pixel value xi with cluster centroid ck value

• Quantised Image: 64 colours (Random)
◦ Select random set of K pixels as “centroids”
◦ Replace pixel value xi with nearest “centroid” value

xi ∈ R3 (pixel values in RGB)

D(xi, xj) = ‖xi − xj‖22
K = 64

Original

Figures: Scikit Learn: Colour Quantization using K‑Means

K-Means: Example

Colour Quantisation
• Original Image: 96,615 colours

• Quantised Image: 64 colours (K‑Means)
◦ Replace pixel value xi with cluster centroid ck value

• Quantised Image: 64 colours (Random)
◦ Select random set of K pixels as “centroids”
◦ Replace pixel value xi with nearest “centroid” value

xi ∈ R3 (pixel values in RGB)

D(xi, xj) = ‖xi − xj‖22
K = 64

Original

K‑Means Quantised

Figures: Scikit Learn: Colour Quantization using K‑Means

K-Means: Example

Colour Quantisation
• Original Image: 96,615 colours

• Quantised Image: 64 colours (K‑Means)
◦ Replace pixel value xi with cluster centroid ck value

• Quantised Image: 64 colours (Random)
◦ Select random set of K pixels as “centroids”
◦ Replace pixel value xi with nearest “centroid” value

xi ∈ R3 (pixel values in RGB)

D(xi, xj) = ‖xi − xj‖22
K = 64

Original

RandomQuantised

Figures: Scikit Learn: Colour Quantization using K‑Means

K-Means: Example

Clustering Handwritten Digits
• High‑dimensional data

• Dimensionality reduction (e.g. PCA)

• K‑Means on embeddings

x ∈ R784

e ∈ R2 (PCA)

D(xi, xj) = ‖ei − ej‖22
K = 10

K-Means: Example

Clustering Handwritten Digits
• High‑dimensional data

• Dimensionality reduction (e.g. PCA)

• K‑Means on embeddings

x ∈ R784

e ∈ R2 (PCA)

D(xi, xj) = ‖ei − ej‖22
K = 10

K-Means: Example

Clustering Handwritten Digits
• High‑dimensional data

• Dimensionality reduction (e.g. PCA)

• K‑Means on embeddings

x ∈ R784

e ∈ R2 (PCA)

D(xi, xj) = ‖ei − ej‖22
K = 10

Hierarchical Clustering

Hierarchical Clustering
Choosing number of clusters
• Depends a lot on granularity

◦ data (e.g. satellite maps—howmuch does 1 pixel cover?)
◦ context—what do we care about? High vs. low level?

• Nomagical algorithm to give you correct K

Find a hierarchy of structure
• Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)

• Lower levels: fine‑grained (e.g. object parts; chair leg, table top, etc.)

• Stategies
◦ Top‑Down: start with everything in one cluster, then split recursively
◦ Bottom‑up: start with each item separately, thenmerge recursively

Hierarchical Clustering
Choosing number of clusters
• Depends a lot on granularity
◦ data (e.g. satellite maps—howmuch does 1 pixel cover?)

◦ context—what do we care about? High vs. low level?

• Nomagical algorithm to give you correct K

Find a hierarchy of structure
• Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)

• Lower levels: fine‑grained (e.g. object parts; chair leg, table top, etc.)

• Stategies
◦ Top‑Down: start with everything in one cluster, then split recursively
◦ Bottom‑up: start with each item separately, thenmerge recursively

Hierarchical Clustering
Choosing number of clusters
• Depends a lot on granularity
◦ data (e.g. satellite maps—howmuch does 1 pixel cover?)
◦ context—what do we care about? High vs. low level?

• Nomagical algorithm to give you correct K

Find a hierarchy of structure
• Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)

• Lower levels: fine‑grained (e.g. object parts; chair leg, table top, etc.)

• Stategies
◦ Top‑Down: start with everything in one cluster, then split recursively
◦ Bottom‑up: start with each item separately, thenmerge recursively

Hierarchical Clustering
Choosing number of clusters
• Depends a lot on granularity
◦ data (e.g. satellite maps—howmuch does 1 pixel cover?)
◦ context—what do we care about? High vs. low level?

• Nomagical algorithm to give you correct K

Find a hierarchy of structure
• Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)

• Lower levels: fine‑grained (e.g. object parts; chair leg, table top, etc.)

• Stategies
◦ Top‑Down: start with everything in one cluster, then split recursively
◦ Bottom‑up: start with each item separately, thenmerge recursively

Hierarchical Clustering
Choosing number of clusters
• Depends a lot on granularity
◦ data (e.g. satellite maps—howmuch does 1 pixel cover?)
◦ context—what do we care about? High vs. low level?

• Nomagical algorithm to give you correct K

Find a hierarchy of structure
• Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)

• Lower levels: fine‑grained (e.g. object parts; chair leg, table top, etc.)

• Stategies
◦ Top‑Down: start with everything in one cluster, then split recursively
◦ Bottom‑up: start with each item separately, thenmerge recursively

Hierarchical Clustering
Choosing number of clusters
• Depends a lot on granularity
◦ data (e.g. satellite maps—howmuch does 1 pixel cover?)
◦ context—what do we care about? High vs. low level?

• Nomagical algorithm to give you correct K

Find a hierarchy of structure
• Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)

• Lower levels: fine‑grained (e.g. object parts; chair leg, table top, etc.)

• Stategies
◦ Top‑Down: start with everything in one cluster, then split recursively
◦ Bottom‑up: start with each item separately, thenmerge recursively

Hierarchical K-Means
• Top‑Down approach

◦ perform K‑Means on data
◦ for each resulting cluster ci, run K‑Means within ci

• Fast: recursive calls on successively smaller datasets

• Greedy: once cluster has been determined at top level; cannot change

Hierarchical K-Means
• Top‑Down approach
◦ perform K‑Means on data

◦ for each resulting cluster ci, run K‑Means within ci

• Fast: recursive calls on successively smaller datasets

• Greedy: once cluster has been determined at top level; cannot change

Hierarchical K-Means
• Top‑Down approach
◦ perform K‑Means on data
◦ for each resulting cluster ci, run K‑Means within ci

• Fast: recursive calls on successively smaller datasets

• Greedy: once cluster has been determined at top level; cannot change

Hierarchical K-Means
• Top‑Down approach
◦ perform K‑Means on data
◦ for each resulting cluster ci, run K‑Means within ci

• Fast: recursive calls on successively smaller datasets

• Greedy: once cluster has been determined at top level; cannot change

Hierarchical K-Means
• Top‑Down approach
◦ perform K‑Means on data
◦ for each resulting cluster ci, run K‑Means within ci

• Fast: recursive calls on successively smaller datasets

• Greedy: once cluster has been determined at top level; cannot change

Agglomerative Clustering
Characteristics

Hard: a point belongs to just one cluster

Hierarchical: multiple levels of clustering

Polythetic: distance‑based similarity within clusters

Idea
Ensure “nearby” points end up in the same cluster
• Bottom‑up approach

• Generates a dendrogram: hierarchical tree of clusters

• Requires defining a distance metric over clusters

Agglomerative Clustering
Characteristics

Hard: a point belongs to just one cluster

Hierarchical: multiple levels of clustering

Polythetic: distance‑based similarity within clusters

Idea
Ensure “nearby” points end up in the same cluster
• Bottom‑up approach

• Generates a dendrogram: hierarchical tree of clusters

• Requires defining a distance metric over clusters

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Agglomerative Clustering: Sketch
D(xl, xm) —distance between points
GD (ci, cj) —distance between clusters of points

Require: GD , {x1, . . . , xN} ⊲ points
1: C = {c1, . . . , cN} = {{x1}, . . . , {xN}} ⊲ initial clusters
2: repeat
3: c∗i , c

∗
j = argmin

ci,cj
GD (ci, cj) ⊲ find closest pair

4: ci·j ← c∗i , c
∗
j ⊲merge into new cluster

5: C = C \ {c∗i , c
∗
j } ⊲ remove pair of clusters

6: C = C ∪ {ci·j} ⊲ addmerged cluster
7: until only one cluster remaining

c

d

ba

e

g

f

h i

j k

nml

di
st
an

ce

a b c d e f g h i j k m n l

Cluster DistanceMeasures
Single Link

GD (ci, cj) = min
xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Single Link

GD (ci, cj) = min
xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Single Link

GD (ci, cj) = min
xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Complete Link

GD (ci, cj) = max
xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Complete Link

GD (ci, cj) = max
xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Complete Link

GD (ci, cj) = max
xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Average Link

GD (ci, cj) =
1

|ci | |cj |
∑

xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Average Link

GD (ci, cj) =
1

|ci | |cj |
∑

xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Average Link

GD (ci, cj) =
1

|ci | |cj |
∑

xi,l∈ci
xj,m∈cj

D(xi,l, xj,m)

Cluster DistanceMeasures
Ward’sMethod

x̄ij =
1
|cij |

∑
xl∈cij

xl (cij = ci ∪ cj)

GD (ci, cj) =
1
|cij |

∑
xl∈cij

D(xl, x̄ij) =
1
|cij |

∑
xl∈cij

‖xl − x̄ij‖2

Cluster DistanceMeasures
Ward’sMethod

x̄ij =
1
|cij |

∑
xl∈cij

xl (cij = ci ∪ cj)

GD (ci, cj) =
1
|cij |

∑
xl∈cij

D(xl, x̄ij) =
1
|cij |

∑
xl∈cij

‖xl − x̄ij‖2

Unified Formulation
Lance-Williams Algorithm
• Whenmerging two clusters to getci·j

• Need to compute updated distances to all other clusters

For each remaining cluster ck, denoting Gi,j = GD (ci, cj)

Gk,i·j = 𝛼iGk,i + 𝛼jGk,j + 𝛽Gi,j + 𝛾 |Gk,i −Gk,j |

Method 𝛼i 𝛼j 𝛽 𝛾

Single Link 0.5 0.5 0 −0.5
Complete Link 0.5 0.5 0 0.5
Average Link |ci |

|ci |+|cj |
|cj |

|ci |+|cj | 0 0
Ward’s Method |ci |+|ck |

|ci |+|cj |+|ck |
|cj |+|ck |

|ci |+|cj |+|ck |
− |ck |

|ci |+|cj |+|ck | 0

Unified Formulation
Lance-Williams Algorithm
• Whenmerging two clusters to getci·j

• Need to compute updated distances to all other clusters

For each remaining cluster ck, denoting Gi,j = GD (ci, cj)

Gk,i·j = 𝛼iGk,i + 𝛼jGk,j + 𝛽Gi,j + 𝛾 |Gk,i −Gk,j |

Method 𝛼i 𝛼j 𝛽 𝛾

Single Link 0.5 0.5 0 −0.5
Complete Link 0.5 0.5 0 0.5
Average Link |ci |

|ci |+|cj |
|cj |

|ci |+|cj | 0 0
Ward’s Method |ci |+|ck |

|ci |+|cj |+|ck |
|cj |+|ck |

|ci |+|cj |+|ck |
− |ck |

|ci |+|cj |+|ck | 0

Unified Formulation
Lance-Williams Algorithm
• Whenmerging two clusters to getci·j

• Need to compute updated distances to all other clusters

For each remaining cluster ck, denoting Gi,j = GD (ci, cj)

Gk,i·j = 𝛼iGk,i + 𝛼jGk,j + 𝛽Gi,j + 𝛾 |Gk,i −Gk,j |

Method 𝛼i 𝛼j 𝛽 𝛾

Single Link 0.5 0.5 0 −0.5
Complete Link 0.5 0.5 0 0.5
Average Link |ci |

|ci |+|cj |
|cj |

|ci |+|cj | 0 0
Ward’s Method |ci |+|ck |

|ci |+|cj |+|ck |
|cj |+|ck |

|ci |+|cj |+|ck |
− |ck |

|ci |+|cj |+|ck | 0

Evaluation

Evaluation
Extrinsic
Helps solve downstream task

• Quantisation: represent data with cluster features
◦ colour quantisation—use centroid value
◦ feature extraction—use cluster index

• Partition: treat clusters as different datasets

◦ train separate classifiers for each sub‑group
◦ e.g. MNIST 1 vs. not 1; 2 vs. not 2…

• Key: Does it help perform task better?

Evaluation
Extrinsic
Helps solve downstream task

• Quantisation: represent data with cluster features
◦ colour quantisation—use centroid value
◦ feature extraction—use cluster index

• Partition: treat clusters as different datasets
◦ train separate classifiers for each sub‑group
◦ e.g. MNIST 1 vs. not 1; 2 vs. not 2…

• Key: Does it help perform task better?

Evaluation
Extrinsic
Helps solve downstream task

• Quantisation: represent data with cluster features
◦ colour quantisation—use centroid value
◦ feature extraction—use cluster index

• Partition: treat clusters as different datasets
◦ train separate classifiers for each sub‑group
◦ e.g. MNIST 1 vs. not 1; 2 vs. not 2…

• Key: Does it help perform task better?

Evaluation
Intrinsic
Helps understand qualitative makeup of data

• Unsupervised: measure howwell‑separated clusters are
◦ compare intra‑cluster distances to inter‑cluster distances
◦ e.g. silhouette scores

• Supervised: measure alignment of clusters to known labels

◦ can treat as evaluation of classification
◦ reason in terms of pairs belonging to cluster / label
◦ issue: # cluster ≠ # labels

• Human: compare judgements to humans on exemplars

◦ ask human if pairxi, xj belong together
◦ compute match between human judgements and predictions: F1‑score, 𝜅, etc.

Evaluation
Intrinsic
Helps understand qualitative makeup of data

• Unsupervised: measure howwell‑separated clusters are
◦ compare intra‑cluster distances to inter‑cluster distances
◦ e.g. silhouette scores

• Supervised: measure alignment of clusters to known labels
◦ can treat as evaluation of classification
◦ reason in terms of pairs belonging to cluster / label
◦ issue: # cluster ≠ # labels

• Human: compare judgements to humans on exemplars

◦ ask human if pairxi, xj belong together
◦ compute match between human judgements and predictions: F1‑score, 𝜅, etc.

Evaluation
Intrinsic
Helps understand qualitative makeup of data

• Unsupervised: measure howwell‑separated clusters are
◦ compare intra‑cluster distances to inter‑cluster distances
◦ e.g. silhouette scores

• Supervised: measure alignment of clusters to known labels
◦ can treat as evaluation of classification
◦ reason in terms of pairs belonging to cluster / label
◦ issue: # cluster ≠ # labels

• Human: compare judgements to humans on exemplars
◦ ask human if pairxi, xj belong together
◦ compute match between human judgements and predictions: F1‑score, 𝜅, etc.

Intrinsic Evaluation: Unsupervised
In the absence of labels, or any other external measure of utility, can compute a generic
measure of howwell‑clustered the data is.

Silhouette Score
Let data point xl ∈ ci be denoted xi,l, then

al =
1

|ci | − 1
∑

xi,m∈ci
m≠l

D(xi,l, xi,m) bl = min
j≠i

1
|cj |

∑
xj,m∈cj

D(xi,l, xj,m)

mean distance within cluster mean distance with nearest cluster

sl =
bl − al

max{al, bl}
|ci | > 1 s = 1

N

N∑
l=1

sl − 1 ≤ s ≤ 1

Intrinsic Evaluation: Unsupervised
In the absence of labels, or any other external measure of utility, can compute a generic
measure of howwell‑clustered the data is.

Silhouette Score
Let data point xl ∈ ci be denoted xi,l, then

al =
1

|ci | − 1
∑

xi,m∈ci
m≠l

D(xi,l, xi,m)

bl = min
j≠i

1
|cj |

∑
xj,m∈cj

D(xi,l, xj,m)

mean distance within cluster

mean distance with nearest cluster

sl =
bl − al

max{al, bl}
|ci | > 1 s = 1

N

N∑
l=1

sl − 1 ≤ s ≤ 1

Intrinsic Evaluation: Unsupervised
In the absence of labels, or any other external measure of utility, can compute a generic
measure of howwell‑clustered the data is.

Silhouette Score
Let data point xl ∈ ci be denoted xi,l, then

al =
1

|ci | − 1
∑

xi,m∈ci
m≠l

D(xi,l, xi,m) bl = min
j≠i

1
|cj |

∑
xj,m∈cj

D(xi,l, xj,m)

mean distance within cluster mean distance with nearest cluster

sl =
bl − al

max{al, bl}
|ci | > 1 s = 1

N

N∑
l=1

sl − 1 ≤ s ≤ 1

Intrinsic Evaluation: Unsupervised
In the absence of labels, or any other external measure of utility, can compute a generic
measure of howwell‑clustered the data is.

Silhouette Score
Let data point xl ∈ ci be denoted xi,l, then

al =
1

|ci | − 1
∑

xi,m∈ci
m≠l

D(xi,l, xi,m) bl = min
j≠i

1
|cj |

∑
xj,m∈cj

D(xi,l, xj,m)

mean distance within cluster mean distance with nearest cluster

sl =
bl − al

max{al, bl}
|ci | > 1

s = 1
N

N∑
l=1

sl − 1 ≤ s ≤ 1

Intrinsic Evaluation: Unsupervised
In the absence of labels, or any other external measure of utility, can compute a generic
measure of howwell‑clustered the data is.

Silhouette Score
Let data point xl ∈ ci be denoted xi,l, then

al =
1

|ci | − 1
∑

xi,m∈ci
m≠l

D(xi,l, xi,m) bl = min
j≠i

1
|cj |

∑
xj,m∈cj

D(xi,l, xj,m)

mean distance within cluster mean distance with nearest cluster

sl =
bl − al

max{al, bl}
|ci | > 1 s = 1

N

N∑
l=1

sl − 1 ≤ s ≤ 1

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}

Labels induce reference clusters R = {r1, . . . , rV}
• if U = V

◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V

◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}

• if U = V

◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V

◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V

◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V

◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V
◦ still cannot compare directly—permutation unknown!

◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V

◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V
◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?

◦ if u↔ v matching known
standard measures: accuracy, F1‑score, etc.

• if U ≠ V

◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V
◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V

◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V
◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V

◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V
◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V
◦ need to also find best alignment

◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V
◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V
◦ need to also find best alignment
◦ can have multiple cu→ same rv

◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Issue: Alignment

Clustering produces clusters C = {c1, . . . , cU}
Labels induce reference clusters R = {r1, . . . , rV}
• if U = V
◦ still cannot compare directly—permutation unknown!
◦ which u corresponds to which v?
◦ if u↔ v matching known

standard measures: accuracy, F1‑score, etc.

• if U ≠ V
◦ need to also find best alignment
◦ can have multiple cu→ same rv
◦ can have multiple rv→ same cu

Intrinsic Evaluation: Supervised
Key Idea: Evaluate relationship between pairs of data points xl, xm

Rand Index (RI)
• + : xl, xm are in the same cluster

• − : xl, xm are in different clusters

TP FN

FP TN

+

+

−

−

Tr
ue

(R
)

Predicted (C)

RI = TP + TN
TP + TN + FP + FN

= Accuracy!

Intrinsic Evaluation: Supervised
Key Idea: Evaluate relationship between pairs of data points xl, xm

Rand Index (RI)
• + : xl, xm are in the same cluster

• − : xl, xm are in different clusters

TP FN

FP TN

+

+

−

−

Tr
ue

(R
)

Predicted (C)

RI = TP + TN
TP + TN + FP + FN

= Accuracy!

Intrinsic Evaluation: Supervised
Issue: Expected value of RI of two random partitions ≠ 0 (or any constant)

Adjusted Rand Index (ARI)
c1 c2 cU sum

r1 N11 N12 · · · N1U a1
r2 N21 N22 · · · N2U a2
...

...
...

. . .
...

...

rV NV1 NV2 · · · NVU aV

sum b1 b2 · · · bU N

Nij = |ri ∩ cj |
(N

2
)
= N(N−1)

2

TP =
∑

ij

(
Nij
2

)
Expected RI =

1(N
2
) [∑

v

(
av
2

)
·
∑

u

(
bu
2

)]

Max RI =
1
2

[∑
v

(
av
2

)
+
∑

u

(
bu
2

)]

ARI =
TP − Expected RI

Max RI − Expected RI

Intrinsic Evaluation: Supervised
Issue: Expected value of RI of two random partitions ≠ 0 (or any constant)

Adjusted Rand Index (ARI)
c1 c2 cU sum

r1 N11 N12 · · · N1U a1
r2 N21 N22 · · · N2U a2
...

...
...

. . .
...

...

rV NV1 NV2 · · · NVU aV

sum b1 b2 · · · bU N

Nij = |ri ∩ cj |
(N

2
)
= N(N−1)

2

TP =
∑

ij

(
Nij
2

)
Expected RI =

1(N
2
) [∑

v

(
av
2

)
·
∑

u

(
bu
2

)]

Max RI =
1
2

[∑
v

(
av
2

)
+
∑

u

(
bu
2

)]

ARI =
TP − Expected RI

Max RI − Expected RI

Intrinsic Evaluation: Supervised
Issue: Expected value of RI of two random partitions ≠ 0 (or any constant)

Adjusted Rand Index (ARI)
c1 c2 cU sum

r1 N11 N12 · · · N1U a1
r2 N21 N22 · · · N2U a2
...

...
...

. . .
...

...

rV NV1 NV2 · · · NVU aV

sum b1 b2 · · · bU N

Nij = |ri ∩ cj |
(N

2
)
= N(N−1)

2

TP =
∑

ij

(
Nij
2

)
Expected RI =

1(N
2
) [∑

v

(
av
2

)
·
∑

u

(
bu
2

)]

Max RI =
1
2

[∑
v

(
av
2

)
+
∑

u

(
bu
2

)]

ARI =
TP − Expected RI

Max RI − Expected RI

Summary
• Clustering: Means of discovering structure / sub‑groups in data

• K‑Means

◦ Hard; Flat; Polythetic
◦ Requires knowing K; search for best K
◦ Fast; Iterative; Local Minima

• Hierarchical Clustering

◦ Hard; Hierarchical; Polythetic
◦ Top‑Down: Hierarchical K‑Means
◦ Bottom‑Up: Agglomerative Clustering
◦ multiple variants: single, complete, etc.

• Evaluation

◦ Unsupervised, Supervised, and Human‑judgement driven

Summary
• Clustering: Means of discovering structure / sub‑groups in data

• K‑Means
◦ Hard; Flat; Polythetic
◦ Requires knowing K; search for best K
◦ Fast; Iterative; Local Minima

• Hierarchical Clustering

◦ Hard; Hierarchical; Polythetic
◦ Top‑Down: Hierarchical K‑Means
◦ Bottom‑Up: Agglomerative Clustering
◦ multiple variants: single, complete, etc.

• Evaluation

◦ Unsupervised, Supervised, and Human‑judgement driven

Summary
• Clustering: Means of discovering structure / sub‑groups in data

• K‑Means
◦ Hard; Flat; Polythetic
◦ Requires knowing K; search for best K
◦ Fast; Iterative; Local Minima

• Hierarchical Clustering
◦ Hard; Hierarchical; Polythetic
◦ Top‑Down: Hierarchical K‑Means
◦ Bottom‑Up: Agglomerative Clustering
◦ multiple variants: single, complete, etc.

• Evaluation

◦ Unsupervised, Supervised, and Human‑judgement driven

Summary
• Clustering: Means of discovering structure / sub‑groups in data

• K‑Means
◦ Hard; Flat; Polythetic
◦ Requires knowing K; search for best K
◦ Fast; Iterative; Local Minima

• Hierarchical Clustering
◦ Hard; Hierarchical; Polythetic
◦ Top‑Down: Hierarchical K‑Means
◦ Bottom‑Up: Agglomerative Clustering
◦ multiple variants: single, complete, etc.

• Evaluation
◦ Unsupervised, Supervised, and Human‑judgement driven

	K-Means
	Hierarchical Clustering
	Evaluation

