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Outline

® Whatis clustering and why is it useful?
® What kinds are there and how are they characterised?

® Explore

o K-Means
o Hierarchical Clustering

® How do we evaluate clustering?
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® Discover the underlying structure of data
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Clustering

® Discover the underlying structure of data

® What sub-groups exist in the data © e
e
o #clusters, size, ... : e
o common properties within sub-group ® o o
o potential for further clustering (6]
Applications Clustersin 2D

e discover classes / structure in an unsupervised manner
o clustering images of handwritten digits (K=10)
o finding phylogenetic trees using DNA
e dimensionality reduction: clusters « “latent factors”
o use clusterid as representation
o assume relevant characteristics reflected in cluster membership
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Features of Clustering Algorithms

Hard vs. Soft
Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters
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Features of Clustering Algorithms

Hard vs. Soft
Hard: objects belong to a single cluster

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical
Flat: single group of clusters

Hierarchical: clusters at different levels

Monothetic vs. Polythetic
Monothetic: clustered based on common feature (e.g. hair colour)

Polythetic: clustered based on distance measure(s) over features
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Features of Clustering Algorithms

Hard vs. Soft

Soft: objects have soft assignments—distribution over clusters

Flat vs. Hierarchical

Monothetic vs. Polythetic
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K-Means

a point belongs to just one cluster
single level of clustering

distance-based similarity within clusters
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K-Means

a point belongs to just one cluster
single level of clustering

distance-based similarity within clusters

Idea

Ensure points closest to some special point end up in the same cluster
® Top-down approach

® Produces a partition of the data

® Requires defining a distance metric over points
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K-Means Algorithm

Require: D, K, {xy,..., TN} > # clusters, points
1: > centroids of clusters
2: repeat
3 forz,, € {x1,...,zy} do
4: CZ =argmin,, D(xn, i) > find nearest centroid id
5 c’]’; — xz, > assign point to cluster
6 for ¢ € {cq,...,cx} do
7 = A Z Tn > update cluster centroids

k T, —Ck

8: until cluster assignments do not change
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K-Means Algorithm

Require: D, K, {xy,..., TN} > # clusters, points
1: {e1,..., cx} < random initialisation > centroids of clusters
2: repeat
3: forxz,, € {x1,...,zN} do
4: > find nearest centroid id
5: c’]’; — xz, > assign point to cluster
6: for ¢ € {cq,...,cx} do
T cp=— Z Tn > update cluster centroids

k Tp—C

8: until cluster assignments do not change
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K-Means Algorithm

Require: D, K, {xy,..., TN} > # clusters, points
1: {e1,..., cx} < random initialisation > centroids of clusters
2: repeat
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K-Means Properties
® Minimises aggregate intra-cluster distance: V:Z Z D(xp, cr)

k xp—c

o if D(x,, cx) = ||z, — cill2, i.e., Euclidean distance, then Vis proportional to variance
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K-Means Properties

® Minimises aggregate intra-cluster distance: V:Z Z D(xp, cr)
k Tp—cy

o if D(x,, cx) = ||z, — cill2, i.e., Euclidean distance, then Vis proportional to variance

® Converges to local minimum

o different initialisations lead to different clustering results
o repeat several random initialisations and pick one with smallest aggregate distance
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K-Means Properties

® Minimises aggregate intra-cluster distance: V:Z Z D(xp, cr)

k xp—c

o if D(x,, cx) = ||z, — cill2, i.e., Euclidean distance, then Vis proportional to variance

® Converges to local minimum
o different initialisations lead to different clustering results
o repeat several random initialisations and pick one with smallest aggregate distance
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Estimating Number of Clusters

°
°
o [ J
o ® ° L4
°
o
°
data
(@) ® ® Q@ @ ® (@) @ ® @ @ ®
(6} [} 5) (5}
: e e : e A : ) e : e
o o o}
o} o o o
e ® 9 L) L)
o e e e
2 clusters 3 clusters 4 clusters 5 clusters

:“N "‘c THE UNIVERSITY of EDINBURGH
A informatics



Estimating Number of Clusters

How many clusters does your data have?
® Get (K) from class labels (e.g. digits 0...9)
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Estimating Number of Clusters

How many clusters does your data have?
® Get (K) from class labels (e.g. digits 0...9)

® Find an “appropriate” K: optimise for V
o Run K-Meansfor K =1,2,...;choose K with smallest V/
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Estimating Number of Clusters

How many clusters does your data have?
® Get (K) from class labels (e.g. digits 0...9)
® Find an “appropriate” K: optimise for V

o Run K-Meansfor K =1,2,...;choose K with smallest V/

o Issue: Whatis Vwhen K= N?
- choose best K on validation data
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Estimating Number of Clusters

How many clusters does your data have?
® Get (K) from class labels (e.g. digits 0...9)

® Find an “appropriate” K: optimise for V
o Run K-Meansfor K =1,2,...;choose K with smallest V/

o Issue: Whatis Vwhen K= N?
- choose best K on validation data

o Choose visually from a elbow plot
- point that maximises the 2" derivative of V/
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K-Means: Example

Original

Colour Quantisation

® Original Image: 96,615 colours

Figures: Scikit Learn: Colour Quantization using K-Means
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K-Means: Example

Colour Quantisation
® Original Image: 96,615 colours

® Quantised Image: 64 colours (K-Means)
o Replace pixel value x; with cluster centroid ¢ value

z; € R (pixel values in RGB)
D(w; ) = || — 1|3

K=64
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K-Means: Example

Original

Colour Quantisation
® Original Image: 96,615 colours

® Quantised Image: 64 colours (K-Means)
o Replace pixel value x; with cluster centroid ¢ value

® Quantised Image: 64 colours (Random)

o Select random set of K pixels as “centroids” RalicomiQuan e

o Replace pixel value x; with nearest “centroid” value

z; € R (pixel values in RGB)
D(w; ) = || — 1|3

K=64

Figures: Scikit Learn: Colour Quantization using K-Means
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K-Means: Example

Clustering Handwritten Digits

® High-dimensional data

T e R784

6 informatics
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K-Means: Example

Clustering Handwritten Digits E
® High-dimensional data

® Dimensionality reduction (e.g. PCA)

zeR™

ecR? (PCA)
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K-Means: Example

Clustering Handwritten Digits E
® High-dimensional data

® Dimensionality reduction (e.g. PCA) Kmeans clustering on PCA-reduced MNIST .
® K-Means on embeddings 1: s
7

504 6

€T e R784 o 259 5

ecR? (PCA) o :

2
D(z;, zj) = || e; - ejll;

K=10

=75 -50 =25 0.0 25 5.0 75 100
PC1
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Hierarchical Clustering

Depends a lot on granularity
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No magical algorithm to give you correct K
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Hierarchical Clustering

Depends a lot on granularity

data (e.g. satellite maps—how much does 1 pixel cover?)
context—what do we care about? High vs. low level?

No magical algorithm to give you correct K

Find a hierarchy of structure
® Upper levels: coarse groups (e.g. collection of objects; bedroom, kitchen, etc.)
® Lower levels: fine-grained (e.g. object parts; chair leg, table top, etc.)

o Stategies

o Top-Down: start with everything in one cluster, then split recursively
o Bottom-up: start with each item separately, then merge recursively
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Hierarchical K-Means

® Top-Down approach
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Hierarchical K-Means

® Top-Down approach
o perform K-Means on data
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Hierarchical K-Means

® Top-Down approach
o perform K-Means on data
o foreach resulting cluster ¢;, run K-Means within ¢;
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Hierarchical K-Means

® Top-Down approach
o perform K-Means on data
o foreach resulting cluster ¢;, run K-Means within ¢;

® Fast: recursive calls on successively smaller datasets




Hierarchical K-Means

® Top-Down approach
o perform K-Means on data
o foreach resulting cluster ¢;, run K-Means within ¢;

® Fast: recursive calls on successively smaller datasets
® Greedy: once cluster has been determined at top level; cannot change

® ® o
® o ®°, o




Agglomerative Clustering

a point belongs to just one cluster
multiple levels of clustering

distance-based similarity within clusters
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Agglomerative Clustering

a point belongs to just one cluster
multiple levels of clustering

distance-based similarity within clusters

Idea

Ensure “nearby” points end up in the same cluster
® Bottom-up approach

® Generates a dendrogram: hierarchical tree of clusters

® Requires defining a distance metric over clusters
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Agglomerative Clustering: Sketch

D(xj, ) —distance between points ®
Gop(c; ) —distance between clusters of points ® ®
© © ® ®

Require: Gp, {x1,...,zN} > points

L C={cy,....en} =z}, ... {zn}} > initial clusters ® ©®

2: repeat

3: i cj = argrgin Go (e c)) > find closest pair O ® ™

i, Cj

4 Cij— € c;‘. > merge into new cluster

5: C=C\{c, c}f} > remove pair of clusters

6 C=CuU{cij} > add merged cluster

7: until only one cluster remaining

distance

abcdef g&hijkmn|
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5: C=C\{c, c}f} > remove pair of clusters

6 C=CuU{cij} > add merged cluster

7: until only one cluster remaining 8
—
abcdef g&hijkmn|

@ informatics



Agglomerative Clustering: Sketch
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Gop(c; ) —distance between clusters of points ® © ®
® O—®
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Agglomerative Clustering: Sketch

D(xj, ) —distance between points

Gop(c; ) —distance between clusters of points ®
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distance
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Agglomerative Clustering: Sketch
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Agglomerative Clustering: Sketch

D(xj, ) —distance between points

Gop(c; ) —distance between clusters of points @ © o
OO  © O—®

Require: Gp, {x1,...,zN} > points
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Agglomerative Clustering: Sketch
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Agglomerative Clustering: Sketch
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OO  © O—®

Require: Gp, {x1,...,zN} > points
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Agglomerative Clustering: Sketch

D(xj, ) —distance between points
Gop(c; ) —distance between clusters of points

Require: Gp, {x1,...,zN} > points
1: C={c1,....,ent={x1},.... {zN}} > initial clusters
2: repeat
3: i cj = argmin Gp(c;, ¢j) > find closest pair

C;,Cj
4 Cij— € c;‘. ' > merge into new cluster
5 C=C\{c, c}f}
6: C=CU{eij}
7: until only one cluster remaining

> remove pair of clusters
> add merged cluster

@ informatics
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Agglomerative Clustering: Sketch

D(xj, ) —distance between points Q
Gop(c; ) —distance between clusters of points @ o
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Agglomerative Clustering: Sketch
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Agglomerative Clustering: Sketch

D(xj, ) —distance between points Q
Gop(c; ) —distance between clusters of points @ 0
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Agglomerative Clustering: Sketch
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Agglomerative Clustering: Sketch

D(xj, ) —distance between points
Gop(c; ) —distance between clusters of points

Require: Gp, {x1,...,zN} > points
1: C={ec1,....,ent ={{z1},.... {zn}} > initial clusters
2: repeat
3: i c;f = argvr?.in Gol(cic)) > find closest pair

i Cj
4 Cij — c*lf, c;‘. > merge into new cluster
5: C=C\{c, c;f} > remove pair of clusters
6 C=CuU{cij} > add merged cluster
7: until only one cluster remaining

distance
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Cluster Distance Measures

Single Link

Golcicj) = Jnin D(zi), Tjjm)

Tjm€Cj
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Cluster Distance Measures

Single Link

Gol(cicj) = i D (i, Tjm)

Tjm € Cj
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Cluster Distance Measures

Single Link

Gol(cicj) = i D (i, Tjm)

Tjm € Cj
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Cluster Distance Measures

Complete Link

Gol(ei ¢)) = max D(z;y, Tjm)
T;€C4

TimECj
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Cluster Distance Measures

Complete Link

Gol(ei ¢)) = max D(z;y, Tjm)
ZUECi

TjmEC;
o
¢ o
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Cluster Distance Measures

Complete Link

Gol(ei ¢)) = max D(z;y, Tjm)
ZUECi

TimECj

o
o— - @

 J
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Cluster Distance Measures

Average Link

1
Gol(c; ) = ——— Z D (i, Tjm)
leil lejl 42,
TjmE€Cj
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Cluster Distance Measures

Average Link

1
Gol(c; ) = ——— Z D (i, Tjm)
leil lejl 42,
TjmE€Cj
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Cluster Distance Measures

Average Link

1
Gol(c; ) = ——— Z D (i, Tjm)
leil lejl 42,
TjmE€Cj
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Cluster Distance Measures

Ward’s Method
1
Tyj=— T (e = ¢V ¢))
|CZJ| TIECjj
Gl e) = =S D(may) = e 3 -
Cij TECyj Cij TIECjj
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Cluster Distance Measures

Ward’s Method

_ 1

Tij = ﬁ x; (Cij =c; U Cj)
Cij TIE C4

Gl e) = =S D(may) = e 3 -
Cij TECyj Cij TIECjj

o
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Unified Formulation

Lance-Williams Algorithm
® When merging two clusters to getc;;

® Need to compute updated distances to all other clusters
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For each remaining cluster ¢, denoting G;; = Gp(c;, ¢j)
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Unified Formulation

Lance-Williams Algorithm
® When merging two clusters to getc;;

® Need to compute updated distances to all other clusters

For each remaining cluster ¢, denoting G;; = Gp(c;, ¢j)

Grij= a;Gri+ ajGyj+ BGij+y|Gri — Gyl

Method a; a; B Y
Single Link 0.5 0.5 0 -0.5
Complete Link 0.5 0.5 0 0.5
Average Link |ci||c+i|‘ o |ci‘\ij\|c7-| 0 0
WardsMethod — Gleftal, CRfee a0
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Evaluation

Extrinsic
Helps solve downstream task

® Quantisation: represent data with cluster features

o colour quantisation—use centroid value
o feature extraction—use cluster index
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Evaluation

Extrinsic
Helps solve downstream task

® Quantisation: represent data with cluster features
o colour quantisation—use centroid value
o feature extraction—use cluster index
® Partition: treat clusters as different datasets
o train separate classifiers for each sub-group
O e.g. MNIST 1vs.not1;2vs.not2...

° Does it help perform task better?




Evaluation

Intrinsic
Helps understand qualitative makeup of data

® Unsupervised: measure how well-separated clusters are

o compare intra-cluster distances to inter-cluster distances
o e.g.silhouette scores
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® Unsupervised: measure how well-separated clusters are
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® Supervised: measure alignment of clusters to known labels

O can treat as evaluation of classification
o reason in terms of pairs belonging to cluster / label
o issue: # cluster # # labels
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Evaluation

Intrinsic
Helps understand qualitative makeup of data

® Unsupervised: measure how well-separated clusters are
o compare intra-cluster distances to inter-cluster distances
o e.g.silhouette scores
® Supervised: measure alignment of clusters to known labels
o can treat as evaluation of classification
o reason in terms of pairs belonging to cluster / label
o issue: # cluster # # labels
® Human: compare judgements to humans on exemplars

o ask human if pairz;, z; belong together
o compute match between human judgements and predictions: F1-score, k, etc.
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Intrinsic Evaluation: Unsupervised

In the absence of labels, or any other external measure of utility, can compute a generic
measure of how well-clustered the data is.

Silhouette Score

Let data point o; € ¢; be denoted z;;, then
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Intrinsic Evaluation: Unsupervised

In the absence of labels, or any other external measure of utility, can compute a generic
measure of how well-clustered the data is.

Silhouette Score
Let data point o; € ¢; be denoted z;;, then

B 1
led =1

a;

Z D (1, Tim)

Tim€C;
m#l

mean distance within cluster
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Intrinsic Evaluation: Unsupervised

In the absence of labels, or any other external measure of utility, can compute a generic
measure of how well-clustered the data is.

Silhouette Score

Let data point o; € ¢; be denoted z;;, then

1 o1
R P D, D zim) g D, D(@ipmym)
| — 5 .
' Tim€ Ci I I 2imec;
m#l
mean distance within cluster mean distance with nearest cluster
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Intrinsic Evaluation: Unsupervised

In the absence of labels, or any other external measure of utility, can compute a generic
measure of how well-clustered the data is.

Silhouette Score

Let data point o; € ¢; be denoted z;;, then

1 o1
R P D, D zim) g D, D(@ipmym)
| — 5 .
? T;m€EcC; J J TjmECj
m#l
mean distance within cluster mean distance with nearest cluster
bi—

§ = —— c;l >1
"7 max{a, by} i
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Intrinsic Evaluation: Unsupervised

In the absence of labels, or any other external measure of utility, can compute a generic
measure of how well-clustered the data is.

Silhouette Score

Let data point o; € ¢; be denoted z;;, then

1 o1
R P D, D zim) g D, D(@ipmym)
? T;m€EcC; J J TjmECj
m#l
mean distance within cluster mean distance with nearest cluster
N
by — 1
5= ———— el > 1 s=—Zsl -1<s<1
max{ay, b} N =
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Intrinsic Evaluation: Supervised

Clustering produces clusters C = {¢y, ..., cy}
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if u &> vmatching known
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Intrinsic Evaluation: Supervised

Clustering produces clusters C = {¢y, ..., cy}
Labels induce reference clusters R = {ry,...,ry}
ifU=V
still cannot compare directly—permutation unknown!
which u corresponds to which v?
if u &> vmatching known
standard measures: accuracy, F1-score, etc.
ifU+V

need to also find best alignment
can have multiple ¢, — same r,,
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Intrinsic Evaluation: Supervised

Key Idea: Evaluate relationship between pairs of data points x;, x,,
Rand Index (RI)

® +: 1, x,,areinthe same cluster

® —: x, x,,arein different clusters
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Intrinsic Evaluation: Supervised

Key Idea: Evaluate relationship between pairs of data points x;, x,,
Rand Index (RI)
® +: 1, x,,areinthe same cluster

® —: x, x,,arein different clusters

Predicted (C)

M pl__ TP+TN
g*r| ™| MW " TP+ TN+ FP+FN
§ | e | ™ = Accuracy!
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Intrinsic Evaluation: Supervised

Expected value of Rl of two random partitions # 0 (or any constant)
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Intrinsic Evaluation: Supervised

Expected value of Rl of two random partitions # 0 (or any constant)

Adjusted Rand Index (ARI)

‘ C1 C Cy sum
i | Nii Nz -+ My | am
o | No1 Nog -+ Noy | a2
rv | Nvi Ny -+ Nyy | ay
wn | b1 By o by | N
B M _ N(N-1)
Nj=Irinel (3) =3
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Intrinsic Evaluation: Supervised

Expected value of Rl of two random partitions # 0 (or any constant)

Adjusted Rand Index (ARI) N
TP = Z ( 21])
i

‘ C1 C2 Cy sum
| N1 N2 -+ Ny |a . . ;
v u
T2 | Not Noo -+ Noy | a2 Expected Rl = (—]2\]) ZU] (2) ) Zu: (2)

v ¥ Ny - Nvw | ey MaxR|=%lZ(a2v)+Z(b2u)]

wn | b1 By o by | N

TP — Expected RI
el (N = NON-1) ARl =
Ni=lringl () 2 Max Rl — Expected Rl
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Summary

® Clustering: Means of discovering structure / sub-groups in data
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o Requires knowing K; search for best K
o Fast; Iterative; Local Minima
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Summary

® Clustering: Means of discovering structure / sub-groups in data

® K-Means
o Hard; Flat; Polythetic
o Requires knowing K; search for best K
o Fast; Iterative; Local Minima

® Hierarchical Clustering

o Hard; Hierarchical; Polythetic
Top-Down: Hierarchical K-Means
Bottom-Up: Agglomerative Clustering
multiple variants: single, complete, etc.

o O O

® Evaluation
o Unsupervised, Supervised, and Human-judgement driven
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