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Generalisation



Outline

• What is Generalisation?

• How do we characterise/measure it?

• What can we do to improve it?
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What is Generalisation?



Generalisation

Machine Learning
• observe data

• learn to model observed data (training data)

• generalise to unseen, novel data (test data)
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Reasoning about Generalisation

Overfitting

• Fit training data well; unseen data poorly

• Reason: accidental regularities

• Reason: memorisation

• Model has very large capacity

Underfitting

• Fits both training and unseen data poorly

• Reason: insufficient regularities

• Model has insufficient capacity

Capacity ≈ # model parameters
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Overfitting vs. Underfitting: Example
Regression
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model too flexible:
fits noise

model too inflexible:
cannot capture pattern

model just right

Figures: C. Bishop ‑ PRML
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Reasoning about Generalisation: Qualitative

Training Data

• More =⇒ better generalisation

◦ close training example likely
◦ fewer accidental regularities

• Less =⇒ lower training error

◦ easier to memorise
◦ fewer regularities to capture

test
error

train
error

# training examples

er
ro
r
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Reasoning about Generalisation: Qualitative

Model Parameters

• More =⇒ better training error

◦ better flexibility
◦ easier to fit true and accidental

regularities

• Muchmore =⇒ poor generalisation

◦ easier to memorise

• Much less =⇒ poor generalisation

◦ struggle to capture regularities

test
error

train
error

# model parameters

er
ro
r

Goldilocks Zone: Sufficient capacity to learn true regularities,
but not enough to memorise or exploit accidental regularities.
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TuningModel Capacity

Data requirements
• Different data requires different capacity

• Need “controls” to control capacity
• “controls” ≡model hyper‑parameters

◦ Regression: polynomial order
◦ Naive Bayes: # attributes, bounds on 𝜎2

◦ Decision Trees: # nodes

 

 

Tune to minimise generalisation error

Figures: Stable Diffusion (Huggingface)
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Generalisation

Measuring Generalisation



Beyond Fitting Training Data

Optimising an error function defined as the average loss over training set:

1
N

N∑
i=1

L
(
ŷi, yi

)
,where ŷi = f(xi;w)

Want
• not just fit training data well

• generalise to novel and unseen instances

 

 

 

 



Beyond Fitting Training Data

Optimising an error function defined as the average loss over training set:

1
N

N∑
i=1

L
(
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Setup to Estimate Generalisation
Need to estimate error on test datawithout training on test data!

D = {Dtrain;Dtest}

Cross Validation

• {Dtrain1 ;Dtest1}, . . . , {DtrainK ;DtestK}
• partition data into train/test in differentways

◦ Leave‑1‑out cross validation
◦ Leave‑K‑out cross validation

• for each partition: train model on training data→ test error on test data

• ‘best’ model ≡model from partition with lowest test error

• typically used for ‘small’ data
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Setup to Estimate Generalisation
But models have hyper‑parameters!

D = {Dtrain;Dval;Dtest}

Train–Val–Test

• cannot tune on training set—need values that generalise!

• cannot tune on test set—peeking at ‘unseen’ data!
• tune hyper‑parameters onDval

◦ for every candidate set of hyper‑parameters, train onDtrain

◦ evaluate error onDval

◦ ‘best’ hyper‑parameters ≡ lowest error onDval

• use model trained with ‘best’ hyper‑parameters→ test error on test data

• typically used for ‘big’ data; hard to cross validate with partitions
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Modelling Generalisation Error
Setup

D ≔ {(x1, y1), . . . , (xN, yN)} ∼ pD (x, y)

Targets need not be unique
y ∼ pD (y|x)

House 1 = x1 = {3BHK, garden=T, sqft=1600} y1 = sale price = 425K
House 2 = x2 = {3BHK, garden=T, sqft=1600} y2 = sale price = 415K

Model prediction
ŷ ∼ pw(ŷ|x)
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Bias and Variance
Expected Target Error
Targets sampled as y ∼ pD (y|x).

E
[
(ŷ − y)2 |x

]

= E
[
ŷ2 − 2ŷy + y2 |x

]
= ŷ2 − 2ŷE[y|x] + E

[
y2 |x

]
(linearity of expectation)

= ŷ2 − 2ŷE[y|x] + E[y|x]2 + Var[y|x] (expression for variance)

= (ŷ − E[y|x])2 + Var[y|x]
, (ŷ − y★)2︸     ︷︷     ︸

residual

+Var[y|x]︸     ︷︷     ︸
Bayes error
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(ŷ − y)2 |x

]
= E

[
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= ŷ2 − 2ŷE[y|x] + E

[
y2 |x

]
(linearity of expectation)

= ŷ2 − 2ŷE[y|x] + E[y|x]2 + Var[y|x] (expression for variance)
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E
[
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Bias and Variance: Schematic

 

 

Figures: Roger Grosse ‑ Generalization

 

 

 

 



Bias and Variance: Schematic

 

 

Generalisation Error:
average squared length of residual ‖ŷ − y‖2

Bias:
average squared length of bias ‖y★ − E[ŷ]‖2

Variance: spread of green ×’s
Bayes error: spread of black ×’s

Figures: Roger Grosse ‑ Generalization
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Generalisation

Improving Generalisation



Strategies for Improving Generalisation
Primarily concerned with reducing overfitting.

• Reducing capacity

• Early stopping

• Ensembles

• Regularisation

 

 

 

 



Strategies for Improving Generalisation
Primarily concerned with reducing overfitting.

• Reducing capacity

• Early stopping

• Ensembles

• Regularisation

• Model capacity – hyper‑parameter

• E.g. degree M of polynomial, # NN layers

• tune on a validation set

Note: Dangerous as can simplify model toomuch!

 

 

 

 



Strategies for Improving Generalisation
Primarily concerned with reducing overfitting.

• Reducing capacity

• Early stopping

• Ensembles

• Regularisation val
error
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error
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Stop training when generalisation error starts to increase

 

 

 

 



Strategies for Improving Generalisation
Primarily concerned with reducing overfitting.

• Reducing capacity

• Early stopping

• Ensembles

• Regularisation

• Train different models on random subsets of training data
…similar to cross validation

• Averaging predictions frommultiple models reduces variance

Ensemble: set of trainedmodels whose predictions are combined
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Regularisation
Key Idea
Penalise parameters that may be pathological and unlikely to generalise well,
by adding a “complexity” cost.

J (w) = 1
N

N∑
i=1

L(f(x;w), y)︸                   ︷︷                   ︸
train loss

+ R(w)︸︷︷︸
regulariser

★ Requires model parameters to be continuous
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Regularisation: Linear Regression
Intuition
Penalising polynomials with large coefficients, should get less “wiggly” solutions.

L2 regularisation
R(w) = 𝜆‖w‖2

Caution: Don’t shrink the bias term w0!

Solvedw
w = (Φ>Φ + 𝜆I )−1Φ>y

Optimisation

∇wJ =
1
N

N∑
i=1

∇wLi + ∇wR

w = w − 𝜂
(
∇wLi + ∇wR

)
(SGD)

= w − 𝜂
(
∇wLi + 2𝜆w

)
= (1 − 2𝜂𝜆)w − 𝜂∇wLi

Each iteration shrinks weights by factor (1 − 2𝜂𝜆): weight decay
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Regularisation: Schematic

 

 

• J (w) is the sum of two parabolic “bowls”

…also a parabolic “bowl”

• Joint minimum on line betweenminimum of
error and origin

…also called ridge regression
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Regularisation: Example
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Figures: C. Bishop ‑ PRML
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Summary

• What is Generalisation?

◦ Model’s ability to fit to future, unseen data
◦ Overfitting vs. Underfitting
◦ Train/Test error: # Training examples, # Model parameters
◦ Hyper‑parameters

• How do we characterise/measure it?

◦ Test error: Data partitioning with cross validation, val/test splits
◦ Bias vs. Variance: relation to overfitting / underfitting

• What can we do to improve it?

◦ Multiple options: reduce capacity, early stopping, ensemble, regularisation
◦ Regularisation: L2 for linear regression—solution, optimisation

Materials credit: Roger Grosse ‑ Generalization
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