

Generalisation

Generalisation

Oisin Mac Aodha • Siddharth N.

1

Outline

• What is Generalisation?

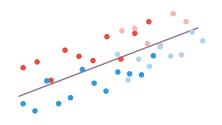
• How do we characterise/measure it?

• What can we do to improve it?

Generalisation

What is Generalisation?

Generalisation



Machine Learning

- observe data
- learn to model observed data (*training* data)
- generalise to unseen, novel data (test data)

informatics

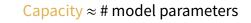
Reasoning about Generalisation

Overfitting

- Fit training data well; unseen data poorly
- Reason: accidental regularities
- Reason: memorisation
- Model has very large capacity

Underfitting

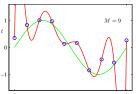
- Fits both training and unseen data poorly
- Reason: insufficient regularities
- Model has insufficient capacity

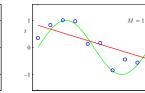


informatics

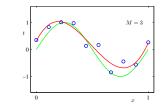
Overfitting vs. Underfitting: Example

Regression





fits noise

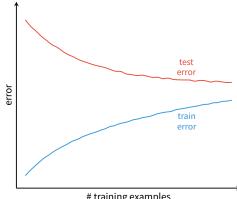


model just right

Reasoning about Generalisation: Qualitative

Training Data

- More \implies better generalisation
 - close training example likely
 - fewer accidental regularities
- Less ⇒ lower training error
 - easier to memorise
 - fewer regularities to capture



training examples

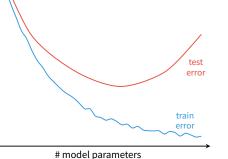
Figures: C. Bishop - PRML

2

Reasoning about Generalisation: Qualitative

Model Parameters

- More ⇒ better training error
 - better flexibility
 - easier to fit true and accidental regularities
- Much more ⇒ poor generalisation
 easier to memorise
- Much less ⇒ poor generalisation
 struggle to capture regularities



Goldilocks Zone: Sufficient capacity to learn true regularities, but not enough to memorise or exploit accidental regularities.

error

Tuning Model Capacity

Data requirements

- Different data requires different capacity
- Need "controls" to control capacity
- "controls" = model hyper-parameters
 - Regression: polynomial order
 - $\circ~$ Naive Bayes: # attributes, bounds on σ^2
 - Decision Trees: # nodes

Tune to minimise generalisation error

Figures: Stable Diffusion (Huggingface)

5

4

Beyond Fitting Training Data

Optimising an error function defined as the average loss over training set:

$$\frac{1}{N}\sum_{i=1}^{N} \mathcal{L}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{w})$

Want

- not just fit training data well
- generalise to *novel* and *unseen* instances

Generalisation

Measuring Generalisation

Setup to Estimate Generalisation

Need to estimate error on test data without training on test data!

 $\mathcal{D} = {\mathcal{D}_{train}; \mathcal{D}_{test}}$

Cross Validation

- $\{\mathcal{D}_{\text{train}_1}; \mathcal{D}_{\text{test}_1}\}, \ldots, \{\mathcal{D}_{\text{train}_K}; \mathcal{D}_{\text{test}_K}\}$
- partition data into train/test in *different* ways
 Leave-1-out cross validation
 - Leave-K-out cross validation
- for each partition: train model on training data \rightarrow test error on test data
- 'best' model ≡ model from partition with lowest test error
- typically used for 'small' data

informatics

Setup to Estimate Generalisation

But models have hyper-parameters!

 $\mathcal{D} = \{\mathcal{D}_{train}; \mathcal{D}_{val}; \mathcal{D}_{test}\}$

Train–Val–Test

- cannot tune on training set—need values that generalise!
- cannot tune on test set—peeking at 'unseen' data!
- tune hyper-parameters on \mathcal{D}_{val}
 - $\circ~$ for every candidate set of hyper-parameters, train on \mathcal{D}_{train}
 - \circ evaluate error on \mathcal{D}_{val}
- 'best' hyper-parameters \equiv lowest error on \mathcal{D}_{val}
- use model trained with 'best' hyper-parameters \rightarrow test error on test data
- typically used for 'big' data; hard to cross validate with partitions

7

8

Modelling Generalisation Error

Setup

 $\mathcal{D} \coloneqq \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_N, y_N)\} \sim p_{\mathcal{D}}(\boldsymbol{x}, y)$

Targets need not be unique

 $y \sim p_{\mathcal{D}}(y|\mathbf{x})$

 $\begin{array}{ll} \mbox{House 1} = x_1 = \{\mbox{3BHK, garden=T, sqft=1600}\} & y_1 = \mbox{sale price} = \mbox{425K}\\ \mbox{House 2} = x_2 = \{\mbox{3BHK, garden=T, sqft=1600}\} & y_2 = \mbox{sale price} = \mbox{415K}\\ \end{array}$

Model prediction

 $\hat{y} \sim p_{w}(\hat{y}|\boldsymbol{x})$

Bias and Variance

Expected Target Error

Targets sampled as $y \sim p_{\mathcal{D}}(y|\mathbf{x})$.

$$\mathbb{E}\left[(\hat{y} - y)^2 | \boldsymbol{x}\right] = \mathbb{E}\left[\hat{y}^2 - 2\hat{y}y + y^2 | \boldsymbol{x}\right]$$

$$= \hat{y}^2 - 2\hat{y}\mathbb{E}[y|\boldsymbol{x}] + \mathbb{E}[y^2|\boldsymbol{x}] \qquad \text{(linearity of expectation)}$$

$$= \hat{y}^2 - 2\hat{y}\mathbb{E}[y|\boldsymbol{x}] + \mathbb{E}[y|\boldsymbol{x}]^2 + \operatorname{Var}[y|\boldsymbol{x}] \qquad \text{(expression for variance)}$$

$$= (\hat{y} - \mathbb{E}[y|\boldsymbol{x}])^2 + \operatorname{Var}[y|\boldsymbol{x}]$$

$$\triangleq \underbrace{(\hat{y} - y_{\star})^2}_{\text{residual}} + \underbrace{\operatorname{Var}[y|\boldsymbol{x}]}_{\text{Bayes error}}$$

Bias and Variance

Expected Test Error

Assume model (p_w) trained on $\mathcal{D} \sim p_{\mathcal{D}}(x, y)$; compute predictions on x. Predictions generated as $\hat{y} \sim p_{w}(\hat{y}|\boldsymbol{x})$.

$$\mathbb{E}\left[(\hat{y} - y)^2\right] = \mathbb{E}\left[(\hat{y} - y_\star)^2\right] + \operatorname{Var}[y]$$

$$= \mathbb{E}\left[y_\star^2 - 2\hat{y}y_\star + \hat{y}^2\right] + \operatorname{Var}[y]$$

$$= y_\star^2 - 2y_\star \mathbb{E}[\hat{y}] + \mathbb{E}\left[\hat{y}^2\right] + \operatorname{Var}[y] \qquad ($$

$$= y_\star^2 - 2y_\star \mathbb{E}[\hat{y}] + \mathbb{E}[\hat{y}]^2 + \operatorname{Var}[\hat{y}] + \operatorname{Var}[y] \qquad ($$

$$= \underbrace{(y_\star - \mathbb{E}[\hat{y}])^2}_{\text{bias}} + \underbrace{\operatorname{Var}[\hat{y}]}_{\text{variance}} + \underbrace{\operatorname{Var}[y]}_{\text{Bayes error}}$$

(linearity of expectation) expression for variance)

8

ŷ from one training set contours of expected loss residual $\mathbb{E}[\hat{\mathbf{y}}]$ bias \mathbf{y}_2 y_1 contours of expected loss

y*

 y_2

Bias and Variance: Schematic

Generalisation Error:

average squared length of residual $\|\hat{y} - y\|^2$ Bias: average squared length of bias $||y_{\star} - \mathbb{E}[\hat{y}]||^2$ **Variance:** spread of green ×'s

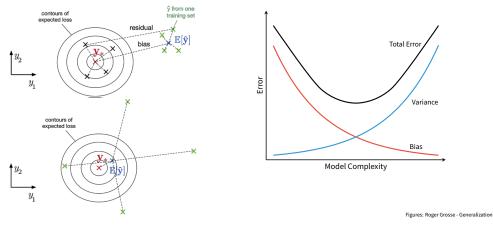
Bayes error: spread of black ×'s

Figures: Roger Grosse - Generalization

9

informatics

Bias and Variance: Schematic



Generalisation

Improving Generalisation

informatics

Strategies for Improving Generalisation

Primarily concerned with reducing overfitting.

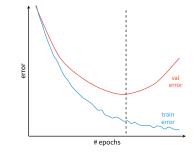
- Reducing capacity
- Early stopping
- Ensembles
- Regularisation

- Model capacity hyper-parameter
- E.g. degree *M* of polynomial, # NN layers
- tune on a validation set
 - Note: Dangerous as can simplify model too much!

Strategies for Improving Generalisation

Primarily concerned with reducing overfitting.

- Reducing capacity
- Early stoppingEnsembles
- Regularisation



Stop training when generalisation error starts to increase

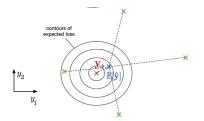
10

informatics

Strategies for Improving Generalisation

Primarily concerned with reducing overfitting.

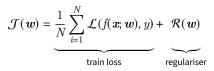
- Reducing capacity
- Early stopping
- Ensembles
- Regularisation
- Train different models on random subsets of training data ...similar to cross validation
 - Averaging predictions from multiple models reduces variance
 - Ensemble: set of trained models whose predictions are combined



Regularisation

Key Idea

Penalise parameters that may be pathological and unlikely to generalise well, by adding a "complexity" cost.



* Requires model parameters to be continuous

Regularisation: Linear Regression

Intuition

Penalising polynomials with *large* coefficients, should get less "wiggly" solutions.

L_2	regul	larisation
- 2		

Optimisation

 $\mathcal{R}(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|^2$

Caution: Don't shrink the bias term $w_0!$

Solved w

$$\boldsymbol{w} = (\boldsymbol{\Phi}^\top \boldsymbol{\Phi} + \boldsymbol{\lambda} \boldsymbol{I})^{-1} \boldsymbol{\Phi}^\top \boldsymbol{y}$$

action

$$\nabla_{w}\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{w}\mathcal{L}^{i} + \nabla_{w}\mathcal{R}$$

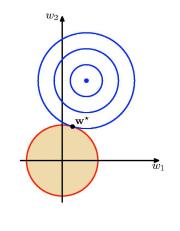
$$w = w - \eta \left(\nabla_{w}\mathcal{L}^{i} + \nabla_{w}\mathcal{R}\right) \qquad (SGD)$$

$$= w - \eta \left(\nabla_{w}\mathcal{L}^{i} + 2\lambda w\right)$$

$$= (1 - 2\eta\lambda)w - \eta \nabla_{w}\mathcal{L}^{i}$$

Each iteration shrinks weights by factor $(1 - 2\eta\lambda)$: weight decay

Regularisation: Schematic



informatics

12

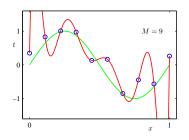
Figures: C. Bishop - PRML

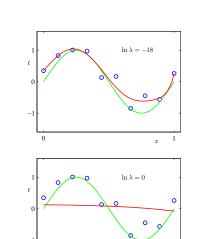
14

x 1

- $\mathcal{J}(w)$ is the sum of two parabolic "bowls" ...also a parabolic "bowl"
- Joint minimum on line between minimum of error and origin
 - ...also called ridge regression

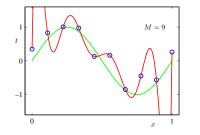
Regularisation: Example

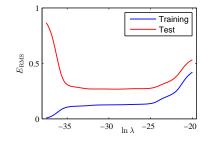




0

Regularisation: Example





Figures: C. Bishop - PRML

Summary

- What is Generalisation?
 - Model's ability to fit to future, unseen data
 - Overfitting vs. Underfitting
 - Train/Test error: # Training examples, # Model parameters
 - Hyper-parameters
- How do we characterise/measure it?
 - Test error: Data partitioning with cross validation, val/test splits
- Bias vs. Variance: relation to overfitting / underfitting
- What can we do to improve it?
 - $\circ~$ Multiple options: reduce capacity, early stopping, ensemble, regularisation
 - $\circ~$ Regularisation: L_2 for linear regression—solution, optimisation

Materials credit: Roger Grosse - Generalization

15

informatics