

 Applied Machine Learning (AML)
Exploratory Data Analysis

Oisin Mac Aodha • Siddharth N.

Data Visualisation

Plotting Data

Plot Types

• temporal change

• part‑to‑whole
composition

• distribution

• group comparison

• inter‑variable relations

• andmore…

Figures: chartio.com

Plotting Data

Plot Types
• temporal change

• part‑to‑whole
composition

• distribution

• group comparison

• inter‑variable relations

• andmore…

Bar chart Line chart

Figures: chartio.com

Plotting Data

Plot Types
• temporal change

• part‑to‑whole
composition

• distribution

• group comparison

• inter‑variable relations

• andmore…

Pie chart Stacked area chart

Figures: chartio.com

Plotting Data

Plot Types
• temporal change

• part‑to‑whole
composition

• distribution

• group comparison

• inter‑variable relations

• andmore…

Histogram Box plot

Figures: chartio.com

Plotting Data

Plot Types
• temporal change

• part‑to‑whole
composition

• distribution

• group comparison

• inter‑variable relations

• andmore…

Point plot Grouped bar chart

Figures: chartio.com

Plotting Data

Plot Types
• temporal change

• part‑to‑whole
composition

• distribution

• group comparison

• inter‑variable relations

• andmore…

Scatter plot Heat map

Figures: chartio.com

Plotting Data

Plot Types
• temporal change

• part‑to‑whole
composition

• distribution

• group comparison

• inter‑variable relations

• andmore…

Wordcloud Joint plot

Figures: chartio.com

Features of a good plot

• title

• labelled axes

• axes ranges and ticks

• clarity (colour/thickness)

• legend

informative:
convey as much as necessary

clean:
avoid overfilling & redundancy

Figures: Matplotlib—anatomy of a figure

Features of a good plot
• title

• labelled axes

• axes ranges and ticks

• clarity (colour/thickness)

• legend

informative:
convey as much as necessary

clean:
avoid overfilling & redundancy

Neural response (BOLD)

Figures: Matplotlib—anatomy of a figure

Features of a good plot
• title

• labelled axes

• axes ranges and ticks

• clarity (colour/thickness)

• legend

informative:
convey as much as necessary

clean:
avoid overfilling & redundancy

Figures: Matplotlib—anatomy of a figure

Features of a good plot
• title

• labelled axes

• axes ranges and ticks

• clarity (colour/thickness)

• legend

informative:
convey as much as necessary

clean:
avoid overfilling & redundancy

Relatively easy to think about
when data is low dimensional

What do we do when data
is high dimensional?

Figures: Matplotlib—anatomy of a figure

Features of a good plot
• title

• labelled axes

• axes ranges and ticks

• clarity (colour/thickness)

• legend

informative:
convey as much as necessary

clean:
avoid overfilling & redundancy

Relatively easy to think about
when data is low dimensional

What do we do when data
is high dimensional?

Figures: Matplotlib—anatomy of a figure

Dimensionality Reduction

Curse of Dimensionality

Manifold Hypothesis
High‑dimensional data in the real world really lies on low‑dimensional manifolds
within that high‑dimensional space.

• Data is typically high dimensional
vision: 104 pixels, text: 106 words

• Example: handwritten digits (MNIST)
◦ 28×28 pixels→ {0, 1}784 possible “images”
◦ only a very small number of these images are actually real
◦ true dimensionality: actual variation of pen strokes!

Curse of Dimensionality

Manifold Hypothesis
High‑dimensional data in the real world really lies on low‑dimensional manifolds
within that high‑dimensional space.

• Data is typically high dimensional
vision: 104 pixels, text: 106 words

• Example: handwritten digits (MNIST)
◦ 28×28 pixels→ {0, 1}784 possible “images”
◦ only a very small number of these images are actually real
◦ true dimensionality: actual variation of pen strokes!

Curse of Dimensionality

Manifold Hypothesis
High‑dimensional data in the real world really lies on low‑dimensional manifolds
within that high‑dimensional space.

• Data is typically high dimensional
vision: 104 pixels, text: 106 words

• Example: handwritten digits (MNIST)
◦ 28×28 pixels→ {0, 1}784 possible “images”
◦ only a very small number of these images are actually real
◦ true dimensionality: actual variation of pen strokes!

Dealing with high dimensionality

Statistics

• ML involves some form of “counting”
observations and features
◦ count within some regions

e.g. constructing histograms
◦ use counts to construct predictors

e.g. decision trees

• As dimensionality grows, fewer
observations per region

Mitigation

• domain knowledge / feature
engineering

• modelling assumptions about features
independence, smoothness, symmetry

• reduce data dimensionality
construct a new set of dimensions /
variables

Dealing with high dimensionality

Statistics
• ML involves some form of “counting”

observations and features
◦ count within some regions

e.g. constructing histograms
◦ use counts to construct predictors

e.g. decision trees

• As dimensionality grows, fewer
observations per region

Mitigation

• domain knowledge / feature
engineering

• modelling assumptions about features
independence, smoothness, symmetry

• reduce data dimensionality
construct a new set of dimensions /
variables

Dealing with high dimensionality

Statistics
• ML involves some form of “counting”

observations and features
◦ count within some regions

e.g. constructing histograms
◦ use counts to construct predictors

e.g. decision trees

• As dimensionality grows, fewer
observations per region

Mitigation

• domain knowledge / feature
engineering

• modelling assumptions about features
independence, smoothness, symmetry

• reduce data dimensionality
construct a new set of dimensions /
variables

Dealing with high dimensionality

Statistics
• ML involves some form of “counting”

observations and features
◦ count within some regions

e.g. constructing histograms
◦ use counts to construct predictors

e.g. decision trees

• As dimensionality grows, fewer
observations per region

Mitigation

• domain knowledge / feature
engineering

• modelling assumptions about features
independence, smoothness, symmetry

• reduce data dimensionality
construct a new set of dimensions /
variables

Dealing with high dimensionality

Statistics
• ML involves some form of “counting”

observations and features
◦ count within some regions

e.g. constructing histograms
◦ use counts to construct predictors

e.g. decision trees

• As dimensionality grows, fewer
observations per region

Mitigation
• domain knowledge / feature

engineering

• modelling assumptions about features
independence, smoothness, symmetry

• reduce data dimensionality
construct a new set of dimensions /
variables

Dealing with high dimensionality

Statistics
• ML involves some form of “counting”

observations and features
◦ count within some regions

e.g. constructing histograms
◦ use counts to construct predictors

e.g. decision trees

• As dimensionality grows, fewer
observations per region

Mitigation
• domain knowledge / feature

engineering

• modelling assumptions about features
independence, smoothness, symmetry

• reduce data dimensionality
construct a new set of dimensions /
variables

Dealing with high dimensionality

Statistics
• ML involves some form of “counting”

observations and features
◦ count within some regions

e.g. constructing histograms
◦ use counts to construct predictors

e.g. decision trees

• As dimensionality grows, fewer
observations per region

Mitigation
• domain knowledge / feature

engineering

• modelling assumptions about features
independence, smoothness, symmetry

• reduce data dimensionality
construct a new set of dimensions /
variables

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection

• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation

• construct a new set of dimensions
e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection

• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation

• construct a new set of dimensions
e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection

• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation

• construct a new set of dimensions
e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection
• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation

• construct a new set of dimensions
e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection
• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation

• construct a new set of dimensions
e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection
• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation

• construct a new set of dimensions
e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection
• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation
• construct a new set of dimensions

e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

Goal: Represent data using a “few” variables

• compression: preserve as much information/structure as possible

• discrimination: only keep information that enables task (e.g. classification)

Selection
• subset of all features

x1, x2, x3, . . . , xD−1, xD

• relevant to task
e.g. ‘credit history’→ loan?

Transformation
• construct a new set of dimensions

e1 . . . eM

x1 x2 x3 . . . xD

M � D

• transformation of original
e.g. linear F =⇒ e = Fx

Dimensionality Reduction

PCA

Principal Components Analysis (PCA)

Define principal components (PCs)
• 1st PC: direction of greatest variation in the data

• 2st PC:⊥ 1st PC; greatest remaining variation

…and so on until D, for x ∈ RD.

• First M � D components→ new basis dimensions

• …transform coordinates of each data point to new basis

Rationale
• variation along direction

= information

• transform basis→
fit maximum information
into M dimensions

Principal Components Analysis (PCA)
Define principal components (PCs)
• 1st PC: direction of greatest variation in the data

• 2st PC:⊥ 1st PC; greatest remaining variation

…and so on until D, for x ∈ RD.

• First M � D components→ new basis dimensions

• …transform coordinates of each data point to new basis

Rationale
• variation along direction

= information

• transform basis→
fit maximum information
into M dimensions

Principal Components Analysis (PCA)
Define principal components (PCs)
• 1st PC: direction of greatest variation in the data

• 2st PC:⊥ 1st PC; greatest remaining variation

…and so on until D, for x ∈ RD.

• First M � D components→ new basis dimensions

• …transform coordinates of each data point to new basis

Rationale
• variation along direction

= information

• transform basis→
fit maximum information
into M dimensions

Principal Components Analysis (PCA)
Define principal components (PCs)
• 1st PC: direction of greatest variation in the data

• 2st PC:⊥ 1st PC; greatest remaining variation

…and so on until D, for x ∈ RD.

• First M � D components→ new basis dimensions

• …transform coordinates of each data point to new basis

Rationale
• variation along direction

= information

• transform basis→
fit maximum information
into M dimensions

PCA: Basics

X =

x>

1
...

x>
N

 X ∈ RN×D, xi ∈ RD
(data)

S =
1
NX>X S ∈ RD×D

(covariance, assuming 0‑mean)

Intuition
Repeated transformation using the covariance (S) turns
towards direction of maximum variance (example)

Sv =

[
2.0 0.8
0.8 0.6

] [
−1
1

]
=

[
−1.2
0.2

]
S
= . . .

S
=

[
−14.1
−6.4

]
S
=

[
−33.3
−15.1

]
where the slope converges to 0.454

0 1 2 3 4
0

1

2

3

4

x

y

0

y

x

v

Goal: Find v such that

Sv = 𝜆v

PCA: Basics

X =

x>

1
...

x>
N

 X ∈ RN×D, xi ∈ RD
(data)

S =
1
NX>X S ∈ RD×D

(covariance, assuming 0‑mean)

Intuition
Repeated transformation using the covariance (S) turns
towards direction of maximum variance (example)

Sv =

[
2.0 0.8
0.8 0.6

] [
−1
1

]
=

[
−1.2
0.2

]
S
= . . .

S
=

[
−14.1
−6.4

]
S
=

[
−33.3
−15.1

]
where the slope converges to 0.454

0 1 2 3 4
0

1

2

3

4

x

y

0

y

x

v

Goal: Find v such that

Sv = 𝜆v

PCA: Basics

X =

x>

1
...

x>
N

 X ∈ RN×D, xi ∈ RD
(data)

S =
1
NX>X S ∈ RD×D

(covariance, assuming 0‑mean)

Intuition
Repeated transformation using the covariance (S) turns
towards direction of maximum variance (example)

Sv =

[
2.0 0.8
0.8 0.6

] [
−1
1

]
=

[
−1.2
0.2

]
S
= . . .

S
=

[
−14.1
−6.4

]
S
=

[
−33.3
−15.1

]
where the slope converges to 0.454

0 1 2 3 4
0

1

2

3

4

x

y

0

y

x

v

Goal: Find v such that

Sv = 𝜆v

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1

solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v

left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA:Maximising Variance
Recall Xv projectsX onto v

Var[Xv] = 1
N (Xv)>(Xv)

=
1
Nv>X>Xv

= v>X>X
N v

= v>Sv

max v>Sv, s.t. v>v = 1
solved using Lagrange multipliers as

max v>Sv − 𝜆
(
v>v − 1

)︸ ︷︷ ︸
L

computing derivative w.r.t v and setting = 0

dL
dv = 2Sv − 2𝜆v = 0

Sv = 𝜆v �

v → direction of max variance

Sv = 𝜆v
left multiply by v>

v>Sv = v>𝜆v
= 𝜆v>v
= 𝜆 �

𝜆 →max variance

PCA: Finding Principal Components
More generally, solve for SV = ΛV using Eigen decomposition

V = [v1, . . . , vD] , Λ =

𝜆1 · · · 0
...

. . .
...

0 · · · 𝜆D

 vi ∈ RD, V ∈ RD×D, ΛD×D

Eigenvalues
Solve |S − 𝜆I| = 0�����2.0 − 𝜆 0.8

0.8 0.6 − 𝜆

����� = 0

𝜆2 − 2.6𝜆 + 0.56 = 0
=⇒ {𝜆1, 𝜆2} = {2.36, 0.23}

Eigenvectors
Find i th eigenvector by solving Svi = 𝜆ivi[

2.0 0.8
0.8 0.6

] [
v1,1
v1,2

]
= 2.36

[
v1,1
v1,2

]
=⇒ v1 =

[
2.2
1

]
[
2.0 0.8
0.8 0.6

] [
v2,1
v2,2

]
= 0.23

[
v2,1
v2,2

]
=⇒ v2 =

[
−0.41
0.91

]

PCA: Finding Principal Components
More generally, solve for SV = ΛV using Eigen decomposition

V = [v1, . . . , vD] , Λ =

𝜆1 · · · 0
...

. . .
...

0 · · · 𝜆D

 vi ∈ RD, V ∈ RD×D, ΛD×D

Eigenvalues
Solve |S − 𝜆I| = 0�����2.0 − 𝜆 0.8

0.8 0.6 − 𝜆

����� = 0

𝜆2 − 2.6𝜆 + 0.56 = 0
=⇒ {𝜆1, 𝜆2} = {2.36, 0.23}

Eigenvectors
Find i th eigenvector by solving Svi = 𝜆ivi[

2.0 0.8
0.8 0.6

] [
v1,1
v1,2

]
= 2.36

[
v1,1
v1,2

]
=⇒ v1 =

[
2.2
1

]
[
2.0 0.8
0.8 0.6

] [
v2,1
v2,2

]
= 0.23

[
v2,1
v2,2

]
=⇒ v2 =

[
−0.41
0.91

]

PCA: Finding Principal Components
More generally, solve for SV = ΛV using Eigen decomposition

V = [v1, . . . , vD] , Λ =

𝜆1 · · · 0
...

. . .
...

0 · · · 𝜆D

 vi ∈ RD, V ∈ RD×D, ΛD×D

Eigenvalues
Solve |S − 𝜆I| = 0�����2.0 − 𝜆 0.8

0.8 0.6 − 𝜆

����� = 0

𝜆2 − 2.6𝜆 + 0.56 = 0
=⇒ {𝜆1, 𝜆2} = {2.36, 0.23}

Eigenvectors
Find i th eigenvector by solving Svi = 𝜆ivi[

2.0 0.8
0.8 0.6

] [
v1,1
v1,2

]
= 2.36

[
v1,1
v1,2

]
=⇒ v1 =

[
2.2
1

]
[
2.0 0.8
0.8 0.6

] [
v2,1
v2,2

]
= 0.23

[
v2,1
v2,2

]
=⇒ v2 =

[
−0.41
0.91

]

PCA: Picking number of dimensions
Given: eigenvectors V = [v1, . . . , vD]; Require: M � D
Known: eigenvalue 𝜆i = variance along vi

Explained variance
• sort eigenvectors s.t. 𝜆1 ≥ . . . ≥ 𝜆D

• choose top M eigenvectors that explain “most”
variance (typically 85%, 90%, or 95%)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

4

0.85

m

ex
pl
ai
ne

d
va
ru

p
to

m

Elbow plot
• plot eigenvalues in descending order 𝜆1 ≥ . . . ≥ 𝜆D

• choose point at which curve “bends” most (i.e. elbow)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

m

𝜆 m

PCA: Picking number of dimensions
Given: eigenvectors V = [v1, . . . , vD]; Require: M � D
Known: eigenvalue 𝜆i = variance along vi

Explained variance
• sort eigenvectors s.t. 𝜆1 ≥ . . . ≥ 𝜆D

• choose top M eigenvectors that explain “most”
variance (typically 85%, 90%, or 95%)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

4

0.85

m

ex
pl
ai
ne

d
va
ru

p
to

m

Elbow plot
• plot eigenvalues in descending order 𝜆1 ≥ . . . ≥ 𝜆D

• choose point at which curve “bends” most (i.e. elbow)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

m

𝜆 m

PCA: Picking number of dimensions
Given: eigenvectors V = [v1, . . . , vD]; Require: M � D
Known: eigenvalue 𝜆i = variance along vi

Explained variance
• sort eigenvectors s.t. 𝜆1 ≥ . . . ≥ 𝜆D

• choose top M eigenvectors that explain “most”
variance (typically 85%, 90%, or 95%)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

4

0.85

m

ex
pl
ai
ne

d
va
ru

p
to

m

Elbow plot
• plot eigenvalues in descending order 𝜆1 ≥ . . . ≥ 𝜆D

• choose point at which curve “bends” most (i.e. elbow)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

m

𝜆 m

PCA: Dimensionality Reduction
Let VM = [v1, . . . , vM] ∈ RD×M denote the truncated eigenvector matrix for M � D

Reduction
Dimensionality reduction on data xi

e>
i = x>

i VM ∈ RM

More generally, projected data E

E =
[
e>

1 , . . . , e>
N
]

=
[
x>

1 VM, . . . , x>
NVM

]
= XVM ∈ RN×M

Reconstruction
Recover data x̂i from ei using V>

M

x̂>
i = e>

i V>
M =

(
x>

i VM
)
V>

M ∈ RD

More generally, reconstructed dataX̂

X̂ =
[
x̂>

1 , . . . , x̂>
N
]

= XVMV>
M ∈ RN×D

VMV>
M ∈ RD×D is the data projectionmatrix

PCA: Dimensionality Reduction
Let VM = [v1, . . . , vM] ∈ RD×M denote the truncated eigenvector matrix for M � D

Reduction
Dimensionality reduction on data xi

e>
i = x>

i VM ∈ RM

More generally, projected data E

E =
[
e>

1 , . . . , e>
N
]

=
[
x>

1 VM, . . . , x>
NVM

]
= XVM ∈ RN×M

Reconstruction
Recover data x̂i from ei using V>

M

x̂>
i = e>

i V>
M =

(
x>

i VM
)
V>

M ∈ RD

More generally, reconstructed dataX̂

X̂ =
[
x̂>

1 , . . . , x̂>
N
]

= XVMV>
M ∈ RN×D

VMV>
M ∈ RD×D is the data projectionmatrix

PCA: Dimensionality Reduction
Let VM = [v1, . . . , vM] ∈ RD×M denote the truncated eigenvector matrix for M � D

Reduction
Dimensionality reduction on data xi

e>
i = x>

i VM ∈ RM

More generally, projected data E

E =
[
e>

1 , . . . , e>
N
]

=
[
x>

1 VM, . . . , x>
NVM

]
= XVM ∈ RN×M

Reconstruction
Recover data x̂i from ei using V>

M

x̂>
i = e>

i V>
M =

(
x>

i VM
)
V>

M ∈ RD

More generally, reconstructed dataX̂

X̂ =
[
x̂>

1 , . . . , x̂>
N
]

= XVMV>
M ∈ RN×D

VMV>
M ∈ RD×D is the data projectionmatrix

PCA: Dimensionality Reduction
Let VM = [v1, . . . , vM] ∈ RD×M denote the truncated eigenvector matrix for M � D

Reduction
Dimensionality reduction on data xi

e>
i = x>

i VM ∈ RM

More generally, projected data E

E =
[
e>

1 , . . . , e>
N
]

=
[
x>

1 VM, . . . , x>
NVM

]
= XVM ∈ RN×M

Reconstruction
Recover data x̂i from ei using V>

M

x̂>
i = e>

i V>
M =

(
x>

i VM
)
V>

M ∈ RD

More generally, reconstructed dataX̂

X̂ =
[
x̂>

1 , . . . , x̂>
N
]

= XVMV>
M ∈ RN×D

VMV>
M ∈ RD×D is the data projectionmatrix

PCA: Dimensionality Reduction
Let VM = [v1, . . . , vM] ∈ RD×M denote the truncated eigenvector matrix for M � D

Reduction
Dimensionality reduction on data xi

e>
i = x>

i VM ∈ RM

More generally, projected data E

E =
[
e>

1 , . . . , e>
N
]

=
[
x>

1 VM, . . . , x>
NVM

]
= XVM ∈ RN×M

Reconstruction
Recover data x̂i from ei using V>

M

x̂>
i = e>

i V>
M =

(
x>

i VM
)
V>

M ∈ RD

More generally, reconstructed dataX̂

X̂ =
[
x̂>

1 , . . . , x̂>
N
]

= XVMV>
M ∈ RN×D

VMV>
M ∈ RD×D is the data projectionmatrix

PCA: Dimensionality Reduction
Let VM = [v1, . . . , vM] ∈ RD×M denote the truncated eigenvector matrix for M � D

Reduction
Dimensionality reduction on data xi

e>
i = x>

i VM ∈ RM

More generally, projected data E

E =
[
e>

1 , . . . , e>
N
]

=
[
x>

1 VM, . . . , x>
NVM

]
= XVM ∈ RN×M

Reconstruction
Recover data x̂i from ei using V>

M

x̂>
i = e>

i V>
M =

(
x>

i VM
)
V>

M ∈ RD

More generally, reconstructed dataX̂

X̂ =
[
x̂>

1 , . . . , x̂>
N
]

= XVMV>
M ∈ RN×D

VMV>
M ∈ RD×D is the data projectionmatrix

Dimensionality Reduction

PCA: Examples

PCA: Overview and Use

Characteristics

Figures: Sydney Firmin @ towardsdatascience.com

PCA: Overview and Use

Characteristics

Figures: Sydney Firmin @ towardsdatascience.com

PCA: Overview and Use

Characteristics

Figures: Sydney Firmin @ towardsdatascience.com

PCA: Overview and Use

Use: Classification

Figures: Sydney Firmin @ towardsdatascience.com

PCA: Overview and Use

Use: Classification

Figures: Sydney Firmin @ towardsdatascience.com

PCA Example 1: UK Food Consumption
X ∈ R4×17

Projecting to 1 component (V1)

Projecting to 2 components (V2)

Figures: setosa.io Data: Mark Richardson

PCA Example 1: UK Food Consumption
X ∈ R4×17

Projecting to 1 component (V1)

Projecting to 2 components (V2)

Figures: setosa.io Data: Mark Richardson

PCA Example 1: UK Food Consumption
X ∈ R4×17

Projecting to 1 component (V1)

Projecting to 2 components (V2)

Figures: setosa.io Data: Mark Richardson

PCA Example 2: Eigenfaces
Data X ∈ R300×4096

Image x ∈ R64×64 is flattened toR4096

…

Mean face:

Principal Component Faces:

…

PCA Example 2: Eigenfaces
Data X ∈ R300×4096

Image x ∈ R64×64 is flattened toR4096

…

Mean face:

Principal Component Faces:

…

PCA Example 2: Eigenfaces
Projection
Projecting face xi onto ei = [ei1, . . . , eiM]

=

+ e1

+ e2

+ e3

+ · · ·

Reconstruction
Reconstructing face x̂i using M components

→

M = 10 M = 30 M = 50 M = 70 M = 90

(90 � 4096!)

PCA Example 2: Eigenfaces
Projection
Projecting face xi onto ei = [ei1, . . . , eiM]

=

+ e1

+ e2

+ e3

+ · · ·

Reconstruction
Reconstructing face x̂i using M components

→

M = 10 M = 30 M = 50 M = 70 M = 90

(90 � 4096!)

PCA: Limitations

Sensitivity
• outliers or scaling dimensions

◦ changes variance along dimension
◦ changes principal components

• fix: normalise—zero mean unit variance
x′ = x−𝜇

𝜎

• find outliers using interquartile range (IQR)

◦ ‘spread’ of middle 50% of values
◦ median(upper quartile) ‑ median(lower quartile)
◦ define ‘outlier’ as values > 1.5*IQR

Q3Q1

Q3 + 1.5*IQRQ1 ‑ 1.5*IQR

Removing outliers

PCA: Limitations

Sensitivity
• outliers or scaling dimensions

◦ changes variance along dimension
◦ changes principal components

• fix: normalise—zero mean unit variance
x′ = x−𝜇

𝜎

• find outliers using interquartile range (IQR)

◦ ‘spread’ of middle 50% of values
◦ median(upper quartile) ‑ median(lower quartile)
◦ define ‘outlier’ as values > 1.5*IQR

Q3Q1

Q3 + 1.5*IQRQ1 ‑ 1.5*IQR

Removing outliers

PCA: Limitations

Sensitivity
• outliers or scaling dimensions

◦ changes variance along dimension
◦ changes principal components

• fix: normalise—zero mean unit variance
x′ = x−𝜇

𝜎

• find outliers using interquartile range (IQR)

◦ ‘spread’ of middle 50% of values
◦ median(upper quartile) ‑ median(lower quartile)
◦ define ‘outlier’ as values > 1.5*IQR

Q3Q1

Q3 + 1.5*IQRQ1 ‑ 1.5*IQR

Removing outliers

PCA: Limitations

Sensitivity
• outliers or scaling dimensions

◦ changes variance along dimension
◦ changes principal components

• fix: normalise—zero mean unit variance
x′ = x−𝜇

𝜎

• find outliers using interquartile range (IQR)
◦ ‘spread’ of middle 50% of values

◦ median(upper quartile) ‑ median(lower quartile)
◦ define ‘outlier’ as values > 1.5*IQR

Q3Q1

Q3 + 1.5*IQRQ1 ‑ 1.5*IQR

Removing outliers

PCA: Limitations

Sensitivity
• outliers or scaling dimensions

◦ changes variance along dimension
◦ changes principal components

• fix: normalise—zero mean unit variance
x′ = x−𝜇

𝜎

• find outliers using interquartile range (IQR)
◦ ‘spread’ of middle 50% of values
◦ median(upper quartile) ‑ median(lower quartile)

◦ define ‘outlier’ as values > 1.5*IQR

Q3Q1

Q3 + 1.5*IQRQ1 ‑ 1.5*IQR

Removing outliers

PCA: Limitations

Sensitivity
• outliers or scaling dimensions

◦ changes variance along dimension
◦ changes principal components

• fix: normalise—zero mean unit variance
x′ = x−𝜇

𝜎

• find outliers using interquartile range (IQR)
◦ ‘spread’ of middle 50% of values
◦ median(upper quartile) ‑ median(lower quartile)
◦ define ‘outlier’ as values > 1.5*IQR

Q3Q1

Q3 + 1.5*IQRQ1 ‑ 1.5*IQR

Removing outliers

PCA: Limitations

Linearity
• 1D: line; 2D: plane

• transform to handle non‑linearity

PCA: Limitations

Linearity
• 1D: line; 2D: plane

• transform to handle non‑linearity

PCA: Limitations

Unsupervised
• maximises data variance along few directions

• ignorant of class labels

• could be hard to separate classes

Data

Projection on PC1

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality

• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering

◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.

◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)

◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)
◦ choose directions that maximise variation (eigenvectors)

◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)
◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information

◦ examples: UK food consumption, Eigenfaces

EDA: Summary
• Broad range of visualisation types

• Need to think about what information goes into a visualisation

• Actual data dimensionality� observed dimensionality
• For high‑dimensional data

◦ domain knowledge / feature engineering
◦ modelling assumption: independence / smoothness / symmetry etc.
◦ dimensionality reduction: selection / transformation

• Principal Components Analysis (PCA)
◦ choose directions that maximise variation (eigenvectors)
◦ for smaller number of components M, pack information
◦ examples: UK food consumption, Eigenfaces

	Data Visualisation
	Dimensionality Reduction
	PCA
	PCA: Examples

