

Oisin Mac Aodha • Siddharth N.

Data Visualisation

Plotting Data

Plot Types

• temporal change

24K

- part-to-whole composition
- distribution
- group comparison
- inter-variable relations

Plotting Data

inter-variable relations

Figures: chartio.com

1

Plotting Data

Plotting Data

• inter-variable relations

the UNIVERSITY of EDINBURGH

1

Figures: chartio.com 1

Plotting Data

- temporal change
- part-to-whole composition
- distribution
- group comparison
- inter-variable relations

Scatter plot Heat map New Revenue 27K 56.5H 56.5K Kent Lincolr 48.9K 54 2020 Q2 2020 Q3 2020 Q4

Plotting Data

Wordcloud

- composition
- distribution
- group comparison
- inter-variable relations
- and more ...

1

Figures: chartio.com

Features of a good plot

- title
- labelled axes
- axes ranges and ticks
- clarity (colour/thickness)
- legend
 - informative: convey as much as necessary

clean: avoid overfilling & redundancy

Features of a good plot

- title
- labelled axes
- axes ranges and ticks
- clarity (colour/thickness)
- legend

informative: convey as much as necessary

clean: avoid overfilling & redundancy

Figures: Matplotlib-anatomy of a figure

2

informatics

Features of a good plot

- title
- labelled axes
- axes ranges and ticks
- clarity (colour/thickness)
- legend

informative: convey as much as necessary clean:

avoid overfilling & redundancy

Relatively easy to think about when data is low dimensional

What do we do when data is high dimensional?

Dimensionality Reduction

Figures: Matplotlib-anatomy of a figure

Curse of Dimensionality

Manifold Hypothesis

High-dimensional data in the real world really lies on low-dimensional manifolds within that high-dimensional space.

- Data is typically high dimensional vision: 10⁴ pixels, text: 10⁶ words
- Example: handwritten digits (MNIST)
- 28×28 pixels $\rightarrow \{0, 1\}^{784}$ possible "images"
- only a very small number of these images are actually real
- true dimensionality: actual variation of pen strokes!

Dealing with high dimensionality

Statistics

- ML involves some form of "counting" observations and features
 - count within some regions e.g. constructing histograms
 - use counts to construct predictors e.g. decision trees
- As dimensionality grows, fewer observations per region

Mitigation

- domain knowledge / feature engineering
- modelling assumptions about features independence, smoothness, symmetry

4

 reduce data dimensionality construct a new set of dimensions / variables

informatics

3

informatics

Dimensionality Reduction

Goal: Represent data using a "few" variables

- compression: preserve as much information/structure as possible
- discrimination: only keep information that enables task (e.g. classification)

Selection

• subset of all features

 $x_1, x_2, x_3, \ldots, x_{D-1}, x_D$

relevant to task
 e.g. 'credit history' → loan?

Transformation

construct a new set of dimensions

$$\overbrace{x_1 \ x_2 \ x_3 \ \dots \ x_D}^{e_1 \ \dots \ e_M} \qquad M \ll D$$

• transformation of original e.g. linear $F \implies e = Fx$

Dimensionality Reduction

PCA

Principal Components Analysis (PCA)

Define principal components (PCs)

- 1st PC: direction of *greatest* variation in the data
- $2^{st} PC: \perp 1^{st} PC$; greatest *remaining* variation ...and so on until *D*, for $x \in \mathbb{R}^{D}$.
- First $M \ll D$ components \rightarrow new basis dimensions
- ...transform coordinates of each data point to new basis

informatics

Rationale

- variation along direction
 = information
- transform basis → fit maximum information into M dimensions

PCA: Basics

Intuition

Repeated transformation using the covariance (S) turns towards direction of maximum variance (example)

PCA: Finding Principal Components

More generally, solve for $SV = \Lambda V$ using Eigen decomposition

where the slope converges to 0.454

informatics

6

Goal: Find *v* such that

 $S \boldsymbol{v} = \lambda \boldsymbol{v}$

PCA: Maximising Variance

$$V = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_D], \ \Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_D \end{bmatrix} \quad \boldsymbol{v}_i \in \mathbb{R}^D, \ V \in \mathbb{R}^{D \times D}, \ \Lambda^{D \times D}$$

Eigenvalues

Solve $|S - \lambda I| = 0$

 $\begin{vmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{vmatrix} = 0$ $\lambda^2 - 2.6\lambda + 0.56 = 0$ $\implies \{\lambda_1, \lambda_2\} = \{2.36, 0.23\}$

Eigenvectors

Find i^{th} eigenvector by solving $S \boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} v_{1,1} \\ v_{1,2} \end{bmatrix} = 2.36 \begin{bmatrix} v_{1,1} \\ v_{1,2} \end{bmatrix} \implies \mathbf{v}_1 = \begin{bmatrix} 2.2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} v_{2,1} \\ v_{2,2} \end{bmatrix} = 0.23 \begin{bmatrix} v_{2,1} \\ v_{2,2} \end{bmatrix} \implies \mathbf{v}_2 = \begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$$

8

PCA: Picking number of dimensions

Given: eigenvectors $V = [v_1, ..., v_D]$; Require: $M \ll D$ Known: eigenvalue λ_i = variance along v_i

Explained variance

- sort eigenvectors s.t. $\lambda_1 \geq \ldots \geq \lambda_D$
- choose top *M* eigenvectors that explain "most" variance (typically 85%, 90%, or 95%)

Elbow plot

- plot eigenvalues in descending order $\lambda_1 \geq \ldots \geq \lambda_D$
- choose point at which curve "bends" most (i.e. elbow)

Dimensionality Reduction

PCA: Examples

informatics

PCA: Dimensionality Reduction

Let $V_M = [v_1, \dots, v_M] \in \mathbb{R}^{D \times M}$ denote the *truncated* eigenvector matrix for $M \ll D$

Reduction

Dimensionality reduction on data $oldsymbol{x}_i$

 $\boldsymbol{e}_i^{\mathsf{T}} = \boldsymbol{x}_i^{\mathsf{T}} V_M \quad \in \mathbb{R}^M$

More generally, projected data ${\cal E}$

$$E = \begin{bmatrix} \boldsymbol{e}_1^{\mathsf{T}}, \dots, \boldsymbol{e}_N^{\mathsf{T}} \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{x}_1^{\mathsf{T}} V_M, \dots, \boldsymbol{x}_N^{\mathsf{T}} V_M \end{bmatrix}$$
$$= X V_M \quad \in \mathbb{R}^{N \times M}$$

Reconstruction

Recover data $\hat{oldsymbol{x}}_i$ from $oldsymbol{e}_i$ using $V_M^{\!\!\! op}$

$$\hat{\boldsymbol{x}}_{i}^{\mathsf{T}} = \boldsymbol{e}_{i}^{\mathsf{T}} V_{M}^{\mathsf{T}} = \left(\boldsymbol{x}_{i}^{\mathsf{T}} V_{M}\right) V_{M}^{\mathsf{T}} \quad \in \mathbb{R}^{D}$$

More generally, reconstructed data \hat{X}

$$\hat{X} = \begin{bmatrix} \hat{x}_1^{\mathsf{T}}, \dots, \hat{x}_N^{\mathsf{T}} \end{bmatrix}$$
$$= X V_M V_M^{\mathsf{T}} \in \mathbb{R}^{N \times D}$$

 $V_M V_M^{\mathsf{T}} \in \mathbb{R}^{D \times D}$ is the data *projection* matrix

10

PCA: Overview and Use

Characteristics

Figures: Sydney Firmin @ towardsdatascience.com

PCA: Overview and Use

Use: Classification

Figures: Sydney Firmin @ towardsdatascience.com

12

the UNIVERSITY of EDINBURGH

Data $X \in \mathbb{R}^{300 \times 4096}$ Image $\boldsymbol{x} \in \mathbb{R}^{64 imes 64}$ is flattened to \mathbb{R}^{4096}

Principal Component Faces:

...

PCA Example 1: UK Food Consumption

Projecting to 1 component (V_1)

Projecting to 2 components (V_2)

Figures: setosa.io Data: Mark Richardson

13

PCA Example 2: Eigenfaces

Projection

Projecting face x_i onto $e_i = [e_{i1}, \ldots, e_{iM}]$

Reconstruction

Reconstructing face \hat{x}_i using *M* components

M = 10 M = 30 M = 50 M = 70 M = 90

informatics

PCA: Limitations

Sensitivity

- outliers or scaling dimensions
- changes variance along dimension
- changes principal components
- **fix:** normalise—zero mean unit variance
 - $x' = \frac{x-\mu}{\sigma}$
- find outliers using interquartile range (IQR)
 - 'spread' of middle 50% of values
 - median(upper quartile) median(lower quartile)
 - define 'outlier' as values > 1.5*IQR

Removing outliers

informatics

15

PCA: Limitations

Unsupervised

- maximises data variance along few directions
- ignorant of class labels
- could be hard to separate classes

Projection on PC1

PCA: Limitations

Linearity

- 1D: line; 2D: plane
- transform to handle non-linearity

informatics

EDA: Summary

- Broad range of visualisation types
- Need to think about what information goes into a visualisation
- Actual data dimensionality << observed dimensionality
- For high-dimensional data
 - domain knowledge / feature engineering
 - modelling assumption: independence / smoothness / symmetry etc.
 - dimensionality reduction: selection / transformation
- Principal Components Analysis (PCA)
 - choose directions that maximise variation (eigenvectors)
 - for smaller number of components *M*, pack information
 - examples: UK food consumption, Eigenfaces

informatics

16