

the university of edinburgh

Applied Machine Learning (AML)

Representing Data

Oisin Mac Aodha • Siddharth N.

Core Questions

- What task am I trying to solve?
- How should I model the problem?
- How should I represent my data?
- How can I estimate the parameters of my model?
- How should I measure the performance of my model?

Core Questions

- What task am I trying to solve?
- How should I model the problem?
- How should I represent my data?
- How can I estimate the parameters of my model?
- How should I measure the performance of my model?

• How do we represent data (*x*) mathematically?

- How do we represent data (*x*) mathematically?
- What is the data, and what outcome we want?

- How do we represent data (*x*) mathematically?
- What is the data, and what outcome we want?
 - If *x* is a person, are they eligible for a loan?

- How do we represent data (*x*) mathematically?
- What is the data, and what outcome we want?
 - If *x* is a person, are they eligible for a loan?
 - If *x* is a chest scan, does the person have a tumour?

Generic way to formulate representations

Generic way to formulate representations

Characteristics

- what values do they take?
- what features/attributes to pick?

Generic way to formulate representations

Characteristics

- what values do they take?
- what features/attributes to pick?

Categorical: {'red', 'blue', ...} Ordinal: {'dislike', 'neutral', 'like'} Numeric: -3.14, 0.2, 1.4, ...

Generic way to formulate representations

Characteristics

- what values do they take?
- what features/attributes to pick?

Data: scale, similarity structured vs. unstructured Task: relevance, noise

What values can features take?

Categorical Features

- Each instance falls into one of a set of categories
 - E.g. musical *genre*: {'classical', 'rock', 'jazz', 'techno'}
 - categories are mutually exclusive

Categorical Features

- Each instance falls into one of a set of categories
 - E.g. musical genre: {'classical', 'rock', 'jazz', 'techno'}
 - categories are mutually exclusive
- Typically encoded as numbers that *index* into the set
 - E.g. 'rock' = 2
 - no natural ordering to the categories
 - no notion of 'closeness'; only equality testing (=, ≠) is meaningful

Ordinal Features

• Each instance falls into one of a set of categories

Ordinal Features

- Each instance falls into one of a set of categories
- There is a *natural ordering* to the categories
 - E.g. marking scale: {'poor', 'fair', 'good', 'excellent'}
 - $\circ\;$ categories are increasing (or decreasing) in some space

Ordinal Features

- Each instance falls into one of a set of categories
- There is a *natural ordering* to the categories
 - E.g. marking scale: {'poor', 'fair', 'good', 'excellent'}
 - $\circ~$ categories are increasing (or decreasing) in some space
- Typically encoded as numbers that *preserve* ordering
 - E.g. 'poor' = 1, ..., 'excellent' = 4
 - meaningful to compare (<, =, >) values
 - not meaningful for other operations (e.g. add, multiply, ...)

Numeric Features

- Integers (\mathbb{Z}, \mathbb{N}) or real numbers (\mathbb{R})
 - integers viewed as implicitly quantizing continuous values

Numeric Features

• Integers (\mathbb{Z}, \mathbb{N}) or real numbers (\mathbb{R})

• integers viewed as *implicitly quantizing* continuous values

- Has the whole gamut of characteristics
 - E.g. height of people: {165cm, 170cm, 188cm, ...}
 - comparison (<, =, >), closeness |3.14 3.00|, functions (e.g. mean, variance).
 - usually bounded and normalised: e.g. zero mean, unit variance

Numeric Features

• Integers (\mathbb{Z}, \mathbb{N}) or real numbers (\mathbb{R})

• integers viewed as *implicitly quantizing* continuous values

- Has the whole gamut of characteristics
 - E.g. height of people: {165cm, 170cm, 188cm, ...}
 - \circ comparison (<, =, >), closeness |3.14 3.00|, functions (e.g. mean, variance).
 - usually bounded and normalised: e.g. zero mean, unit variance
- Can extend to higher order features
 - $x \in \mathbb{R}^D$ for D = 1 is scalar, D > 1 is a vector
 - $x \in \mathbb{R}^{D_1 \times \cdots \times D_N}$ for N = 1 is a vector, N = 2 is a matrix, ...

Examples of Representing Data

- Categorical
 - purpose: {'car', 'home', 'education', 'business'}
 - personal: {'single', 'married', 'divorced', 'separated'}

- Categorical
 - purpose: {'car', 'home', 'education', 'business'}
 - personal: {'single', 'married', 'divorced', 'separated'}
- Ordinal
 - savings per month: {0, <100, 100-500, 500-1000, >1000}
 - \circ current employment period: {'unemployed', <1yr, 1—4yrs, >4yrs}

- Categorical
 - purpose: {'car', 'home', 'education', 'business'}
 - personal: {'single', 'married', 'divorced', 'separated'}
- Ordinal
 - savings per month: {0, <100, 100-500, 500-1000, >1000}
 - o current employment period: {'unemployed', <1yr, 1—4yrs, >4yrs}
- Numeric
 - loan amount: e.g. £1000
 - loan interest: e.g. 5%

Should an applicant be given a loan?

- Categorical
 - purpose: {'car', 'home', 'education', 'business'}
 - personal: {'single', 'married', 'divorced', 'separated'}
- Ordinal
 - savings per month: {0, <100, 100-500, 500-1000, >1000}
 - o current employment period: {'unemployed', <1yr, 1—4yrs, >4yrs}
- Numeric
 - loan amount: e.g. £1000
 - loan interest: e.g. 5%

Each applicant can have different values for these features.

Is this email spam or not?

Is this email spam or not?

• Represent email text as feature vector $\boldsymbol{x} = [x_1, \dots, x_D]$

Is this email spam or not?

- Represent email text as feature vector $\boldsymbol{x} = [x_1, \dots, x_D]$
- Use binary *categorical* features $x_d \in \{0, 1\}$ to indicate presence of a word

Is this email spam or not?

- Represent email text as feature vector $\boldsymbol{x} = [x_1, \dots, x_D]$
- Use binary *categorical* features $x_d \in \{0, 1\}$ to indicate presence of a word
- Given the following vocabulary we can represent data as:

{ 'password', 'review', 'send', 'us', 'your', 'account' }

id	email	feature	status
1	"send us your password"	[1, 0, 1, 1, 1, 0]	spam
2	"send us review"	[0, 1, 1, 1, 0, 0]	ham
3	"review your account"	[0, 1, 0, 0, 1, 1]	ham
4	"review us"	[0, 1, 0, 1, 0, 0]	spam
5	"send your password"	[1, 0, 1, 0, 1, 0]	spam
6	"send us your account"	[0, 0, 1, 1, 1, 1]	spam

Example: Image Data

Pixels

- each pixel as separate feature
- numeric: degree of pixel "blackness"
- ordinal: binary $\in \{0, 1\}$

Example: Image Data

Pixels

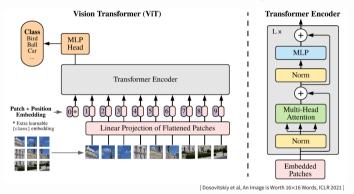
Regions

- each pixel as separate feature
- numeric: degree of pixel "blackness"
- ordinal: binary $\in \{0, 1\}$

- regions as separate features
- categorical: majority pixel class
- numeric: average pixel colour

Modern Representations

Choose a basic set of attributes, say image "patches"



Learn what values for features helps with doing the task well.

[R. A. Brooks, Intelligence without representation, Artificial Intelligence 47(1), 1991]

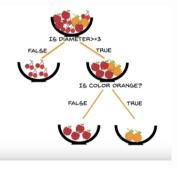
• Consider both data and task

data: what kinds of features to usetask: subset of features,type of values

- Consider both data and task
- Consider what kind of model you want

- Consider both data and task
- Consider what kind of model you want
 nuanced, interpretable

Constrained decision making over meaningful features



- Consider both data and task
- Consider what kind of model you want

 nuanced, interpretable
 - scalable, performant

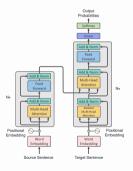
Opaque decision making over *learnt* task-specific features

- Consider both data and task
- Consider what kind of model you want

 nuanced, interpretable
 - scalable, performant

Powerful machine-learning models can be a *big* hammer

Opaque decision making over *learnt* task-specific features



- Consider both data and task
- Consider what kind of model you want

 nuanced, interpretable
 - scalable, performant

Powerful machine-learning models can be a *big* hammer ...is your problem a nail?

Opaque decision making over *learnt* task-specific features

