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Decision Trees



Nonlinear Data
• Linear classifiers are not capable of separating nonlinear data

• Many real world problems of interest may not necessarily have linearly separable
data

• Decision trees are a popular approach for nonlinear classification and regression

• They operate by recursively partitioning the input feature space and then defining
local models in each of the resulting regions
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Decision Tree Example
Should I go for a walk? rain

wind no

yes no

<=5mm >5mm

<= 10km/h >10km/h

 

 

 

 



Advantages of Decision Trees
• Intuitive

• Efficient

• Nonlinear
• General ‑

◦ Classification
◦ Regression

• Can handle mixed data types

rain

wind no

yes no

<=5mm >5mm

<= 10km/h >10km/h

 

 

 

 



Tree Terminology
• There are three main types of nodes in a tree: root, internal, and leaves

• Each non‑leaf node is a parent, and has a left and right child

root

internal leaf

leaf leaf

 

 

 

 



2D Example
• In this example, we have 10 2D datapoints, i.e. {x1, ..., x10}, where x ∈ R2

• We have six red (y=1) and four blue (y=2) datapoints

x2

x1

𝜃1

𝜃2

 

 

 

 



2D Example
• At each node, we split the data based on a feature dimension and threshold, here 𝜃1

• Then we store the percentage of examples from each class (pc) at the leaves

x2

x1

𝜃1

𝜃2
4/4,
0/0

2/6,
4/6

x1 <= 𝜃1 x1 > 𝜃1

 

 

 

 



2D Example
• We can keep splitting the tree until we reach some predefined stopping criteria

• Note, we split a feature dimension multiple times

x2

x1

𝜃1

𝜃2

4/4,
0/0

0/0,
4/4

2/2,
0/0

x1 <= 𝜃1 x1 > 𝜃1

x2 <= 𝜃2 x2 > 𝜃2

 

 

 

 



2D Example - Evaluating a Test Datapoint
• How can we predict the class label of a new example xn?

• We simply evaluate each relevant node to find the leaf that contains it

x2

x1

𝜃1

𝜃2
xn

4/4,
0/0

0/0,
4/4

2/2,
0/0

x1 <= 𝜃1 x1 > 𝜃1

x2 <= 𝜃2 x2 > 𝜃2

 

 

 

 



Applications of Decision Trees
• Due to their speed and performance, decision trees have been applied to many

different tasks

 

 

Human body pose estimation using decision trees from Shotton et al. CVPR 2011.

 

 

 

 



Fitting Decision Trees



Decision Tree Learning
• Start with all the data at the root node of the tree

• Grow the tree by recursively splitting the data at each node

• Keeping growing until you reach a specified condition, e.g. the tree reaches a
predefinedmaximum depth or it is not possible to split the data any further

• Different methods have been proposed over the years, e.g. CART, ID3, ...

 

 

 

 



Measuring the Quality of a Split
• How do we determine what threshold and feature dimension to use at each node in

the tree?

• We should favour splits that result in child nodes that have high ‘purity’, i.e. low
‘impurity’

• One common approach for classification is to measure the entropy at each node
◦ The entropy of a random variable is the average level of ‘information’, ‘surprise’, or

‘uncertainty’ inherent to the variable’s possible outcomes

IE(S) = −
C∑

c=1
pc log2 pc
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Evaluating Entropy
Entropy can be computed using the distribution of datapoints at a given node.

IE(S) = −
C∑

c=1
pc log2 pc

• C is the number of classes in the dataset, i.e. y ∈ {1, ...,C}
• S is the subset of datapoints that have arrived at the node, where S ⊆ {(xn, yn)}N

n=1

• pc is the proportion of examples from class c that are present at the node, where
pc ∈ [0, 1]

 

 

 

 



Entropy
We have low entropy whenmost, if not all,
the datapoints at a node are from the same
class.

IE(S) = −
C∑

c=1
pc log2 pc

Note, that the expression for entropy is
often also notated as H(S).

Entropy
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Alternative Splitting Criteria
There are alternative splitting criteria, e.g.
Gini Impurity.

IG(S) = 1 −
C∑

c=1
p2

c

Gini Impurity
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Information Gain

• Now that we canmeasure the purity at
each node in a tree, we can use this to
determine the quality of different splits

• We do this measuring the Information
Gain of a split

Gain(S, 𝜃, d) = I(S)−
(
|Sl |
|S| I(Sl) +

|Sr |
|S| I(Sr)

)
Here |S| = |Sl | + |Sr |

x2

x1

𝜃1

|S| = 10
|Sl | = 4
|Sr | = 6
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Information Gain

• Now that we canmeasure the purity at
each node in a tree, we can use this to
determine the quality of different splits

• We do this measuring the Information
Gain of a split

Gain(S, 𝜃, d) = I(S)−
(
|Sl |
|S| I(Sl) +

|Sr |
|S| I(Sr)

)
Here |S| = |Sl | + |Sr |

x2

x1

𝜃2

|S| = 10
|Sl | = 7
|Sr | = 3

Different splits will result in different
Information Gain

 

 

 

 



Choosing the Best Split
• Evaluate the Information Gain for each feature dimension and threshold pair at a

given node

• Choose the pair with the largest gain

• If trying all combinations is impractical, one can choose the best pair from a random
subset
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Stopping Criteria
• A tree can always classify training examples perfectly, i.e.

◦ Keep splitting each node until there is only one example at each leaf
◦ These ‘singleton’ nodes will be pure

• This will result in overfitting to the training data, i.e. the model will not generalise
well to new data

 

 

 

 



Avoiding Overfitting

• Introduce an additional hyperparameter
◦ Maximum tree depth
◦ Minimum number of datapoints per node
◦ Minimum information gain

• Grow the tree to full depth, and then
‘prune’ it
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Additional Topics



Regression Trees
• We can also model continuous targets using regression trees, i.e. y ∈ R
• The tree models data locally as a piece‑wise constant function, where it stores a

different mean value ȳi at each leaf node
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ȳ1

ȳ2

ȳ3

0 2 4 6 8 10
0

2

4

x1

y

 

 

 

 



Regression Criteria

• In the case of regression, our ground
truth targets are continuous values

• As a result, we require a different
definition of node purity

IR(S) =
1
|S|

∑
y ∈ S

(y − ȳ)2

• At each leaf we store the mean of all the
datapoints that arrived at the node

ȳ =
1
|S|

∑
y ∈ S

y

Regression Impurity
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Discrete Features
• Decision trees can handle both continuous or discrete (i.e. categorical) features

• In practice, popular implementations may not support natively

• For non‑ordinal categorical variables it is possible to transform them using a one‑hot
encoding

 

 

 

 



Trees are Interpretable

 

petal length (cm) ≤ 2.45
gini = 0.6667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
gini = 0.0425
samples = 46

value = [0, 1, 45]
class = virginica

petal width (cm) ≤ 1.65
gini = 0.0408
samples = 48

value = [0, 47, 1]
class = versicolor

petal width (cm) ≤ 1.55
gini = 0.4444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 47

value = [0, 47, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

sepal length (cm) ≤ 6.95
gini = 0.4444
samples = 3

value = [0, 2, 1]
class = versicolor

sepal length (cm) ≤ 5.95
gini = 0.4444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

gini = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

gini = 0.0
samples = 2

value = [0, 0, 2]
class = virginica

 

Image credit: https://scikit‑learn.org/stable/modules/tree.html

 

 

 

 



Ensembles of Trees
• Grow an ensemble of K different decision trees:

◦ Pick a random subset of the data
◦ Train a decision tree on this data

• When splitting, choose a random subset of features

◦ Repeat this K different times

• Given a new datapoint x at test time:
◦ Classify x separately using each tree
◦ Combine the predictions from each individual tree for the final output, e.g. using the

majority vote

• Simple, but can be very effective
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