

Decision Trees

Oisin Mac Aodha • Siddharth N.

Nonlinear Data

- Linear classifiers are not capable of separating nonlinear data
- Many real world problems of interest may not necessarily have linearly separable data
- Decision trees are a popular approach for nonlinear classification and regression
- They operate by recursively partitioning the input feature space and then defining local models in each of the resulting regions

Decision Tree Example

Should I go for a walk?

Advantages of Decision Trees

- Intuitive
- Efficient
- Nonlinear
- General -
 - Classification
- Regression
- Can handle mixed data types

Tree Terminology

- There are three main types of nodes in a tree: root, internal, and leaves
- Each non-leaf node is a parent, and has a left and right child

2D Example

- In this example, we have 10 2D datapoints, i.e. $\{x_1, ..., x_{10}\}$, where $x \in \mathbb{R}^2$
- We have six red (y=1) and four blue (y=2) datapoints

2D Example

informatics

- At each node, we split the data based on a feature dimension and threshold, here θ_1
- Then we store the percentage of examples from each class (*p*_c) at the leaves

3

6

2D Example

- We can keep splitting the tree until we reach some predefined stopping criteria
- Note, we split a feature dimension multiple times

informatics

2D Example - Evaluating a Test Datapoint

- How can we predict the class label of a new example x_n ?
- We simply evaluate each relevant node to find the leaf that contains it

8

Applications of Decision Trees

• Due to their speed and performance, decision trees have been applied to many different tasks

Human body pose estimation using decision trees from Shotton et al. CVPR 2011.

Fitting Decision Trees

Decision Tree Learning

- Start with all the data at the root node of the tree
- Grow the tree by recursively splitting the data at each node
- Keeping growing until you reach a specified condition, e.g. the tree reaches a predefined maximum depth or it is not possible to split the data any further
- Different methods have been proposed over the years, e.g. CART, ID3, ...

Measuring the Quality of a Split

- How do we determine what threshold and feature dimension to use at each node in the tree?
- We should favour splits that result in child nodes that have high 'purity', i.e. low 'impurity'
- One common approach for classification is to measure the entropy at each node
 The entropy of a random variable is the average level of 'information', 'surprise', or 'uncertainty' inherent to the variable's possible outcomes

$$I_E(S) = -\sum_{c=1}^C p_c \log_2 p_c$$

10

Evaluating Entropy

Entropy can be computed using the distribution of datapoints at a given node.

$$I_E(S) = -\sum_{c=1}^C p_c \log_2 p_c$$

- *C* is the number of classes in the dataset, i.e. $y \in \{1, ..., C\}$
- S is the subset of datapoints that have arrived at the node, where $S \subseteq \{(x_n, y_n)\}_{n=1}^N$
- p_c is the proportion of examples from class c that are present at the node, where $p_c \in [0, 1]$

Entropy

informatics

We have low entropy when most, if not all, the datapoints at a node are from the same class.

$$I_E(S) = -\sum_{c=1}^C p_c \log_2 p_c$$

Note, that the expression for entropy is often also notated as H(S).

Binary case:

 $I_E(S) = -p_1 \log_2 p_1 - p_2 \log_2 p_2$

12

13

Alternative Splitting Criteria

There are alternative splitting criteria, e.g. Gini Impurity.

$$I_G(S) = 1 - \sum_{c=1}^{C} p_c^2$$

Information Gain

Here $|S| = |S_l| + |S_r|$

- Now that we can measure the purity at each node in a tree, we can use this to determine the quality of different splits
- We do this measuring the Information Gain of a split

 $Gain(S, \theta, d) = I(S) - \left(\frac{|S_l|}{|S|}I(S_l) + \frac{|S_r|}{|S|}I(S_r)\right)$

informatics

Information Gain

- Now that we can measure the purity at each node in a tree, we can use this to determine the quality of different splits
- We do this measuring the Information Gain of a split

$$Gain(S, \theta, d) = I(S) - \left(\frac{|S_l|}{|S|}I(S_l) + \frac{|S_r|}{|S|}I(S_r)\right)$$

Here $|S| = |S_l| + |S_r|$

Different splits will result in different Information Gain

Choosing the Best Split

- Evaluate the Information Gain for each feature dimension and threshold pair at a given node
- Choose the pair with the largest gain
- If trying all combinations is impractical, one can choose the best pair from a random subset

16

Stopping Criteria

- A tree can always classify training examples perfectly, i.e.
 - $\circ\;$ Keep splitting each node until there is only one example at each leaf
 - These 'singleton' nodes will be pure
- This will result in *overfitting* to the training data, i.e. the model will not generalise well to new data

Avoiding Overfitting

- Introduce an additional hyperparameter
 - Maximum tree depth
 - $\circ~$ Minimum number of datapoints per node
 - Minimum information gain
- Grow the tree to full depth, and then 'prune' it

18

informatics

Regression Trees

- We can also model continuous targets using regression trees, i.e. $y \in \mathbb{R}$
- The tree models data locally as a piece-wise constant function, where it stores a different mean value \bar{y}_i at each leaf node

Additional Topics

Regression Criteria

- In the case of regression, our ground truth targets are continuous values
- As a result, we require a different definition of node purity

$$I_R(S) = \frac{1}{|S|} \sum_{y \in S} (y - \bar{y})^2$$

• At each leaf we store the mean of all the datapoints that arrived at the node

$$\bar{y} = \frac{1}{|S|} \sum_{y \in S} y$$

Regression Impurity

Discrete Features

- Decision trees can handle both continuous or discrete (i.e. categorical) features
- In practice, popular implementations may not support natively
- For non-ordinal categorical variables it is possible to transform them using a *one-hot* encoding

21

informatics

informatics

Trees are Interpretable

 $I_R(S)$

Ensembles of Trees

- Grow an ensemble of *K* different decision trees:
 - Pick a random subset of the data
 - $\circ~$ Train a decision tree on this data
 - When splitting, choose a random subset of features
 - Repeat this K different times
- Given a new datapoint *x* at test time:
 - \circ Classify x separately using each tree
 - Combine the predictions from each individual tree for the final output, e.g. using the majority vote
- Simple, but can be very effective

Image credit: https://scikit-learn.org/stable/modules/tree.html

