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Decision Trees

Nonlinear Data
• Linear classifiers are not capable of separating nonlinear data

• Many real world problems of interest may not necessarily have linearly separable
data

• Decision trees are a popular approach for nonlinear classification and regression

• They operate by recursively partitioning the input feature space and then defining
local models in each of the resulting regions
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Decision Tree Example
Should I go for a walk? rain

wind no

yes no

<=5mm >5mm

<= 10km/h >10km/h
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Advantages of Decision Trees
• Intuitive

• Efficient

• Nonlinear
• General ‑

◦ Classification
◦ Regression

• Can handle mixed data types

rain

wind no

yes no

<=5mm >5mm

<= 10km/h >10km/h

 

 

 

 

3

Tree Terminology
• There are three main types of nodes in a tree: root, internal, and leaves

• Each non‑leaf node is a parent, and has a left and right child

root

internal leaf

leaf leaf
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2D Example
• In this example, we have 10 2D datapoints, i.e. {x1, ..., x10}, where x ∈ R2

• We have six red (y=1) and four blue (y=2) datapoints

x2

x1

𝜃1

𝜃2

 

 

 

 

5

2D Example
• At each node, we split the data based on a feature dimension and threshold, here 𝜃1

• Then we store the percentage of examples from each class (pc) at the leaves

x2

x1

𝜃1

𝜃2
4/4,
0/0

2/6,
4/6

x1 <= 𝜃1 x1 > 𝜃1
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2D Example
• We can keep splitting the tree until we reach some predefined stopping criteria

• Note, we split a feature dimension multiple times

x2

x1

𝜃1

𝜃2

4/4,
0/0

0/0,
4/4

2/2,
0/0

x1 <= 𝜃1 x1 > 𝜃1

x2 <= 𝜃2 x2 > 𝜃2
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2D Example - Evaluating a Test Datapoint
• How can we predict the class label of a new example xn?

• We simply evaluate each relevant node to find the leaf that contains it

x2

x1

𝜃1

𝜃2
xn

4/4,
0/0

0/0,
4/4

2/2,
0/0

x1 <= 𝜃1 x1 > 𝜃1

x2 <= 𝜃2 x2 > 𝜃2
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Applications of Decision Trees
• Due to their speed and performance, decision trees have been applied to many

different tasks

 

 

Human body pose estimation using decision trees from Shotton et al. CVPR 2011.
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Fitting Decision Trees



Decision Tree Learning
• Start with all the data at the root node of the tree

• Grow the tree by recursively splitting the data at each node

• Keeping growing until you reach a specified condition, e.g. the tree reaches a
predefinedmaximum depth or it is not possible to split the data any further

• Different methods have been proposed over the years, e.g. CART, ID3, ...
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Measuring the Quality of a Split
• How do we determine what threshold and feature dimension to use at each node in

the tree?

• We should favour splits that result in child nodes that have high ‘purity’, i.e. low
‘impurity’

• One common approach for classification is to measure the entropy at each node
◦ The entropy of a random variable is the average level of ‘information’, ‘surprise’, or

‘uncertainty’ inherent to the variable’s possible outcomes

IE(S) = −
C∑

c=1
pc log2 pc
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Evaluating Entropy
Entropy can be computed using the distribution of datapoints at a given node.

IE(S) = −
C∑

c=1
pc log2 pc

• C is the number of classes in the dataset, i.e. y ∈ {1, ...,C}
• S is the subset of datapoints that have arrived at the node, where S ⊆ {(xn, yn)}N

n=1

• pc is the proportion of examples from class c that are present at the node, where
pc ∈ [0, 1]
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Entropy
We have low entropy whenmost, if not all,
the datapoints at a node are from the same
class.

IE(S) = −
C∑

c=1
pc log2 pc

Note, that the expression for entropy is
often also notated as H(S).

Entropy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p1

I E
(S
)

Binary case:

IE(S) = −p1 log2 p1 − p2 log2 p2
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Alternative Splitting Criteria
There are alternative splitting criteria, e.g.
Gini Impurity.

IG(S) = 1 −
C∑

c=1
p2

c

Gini Impurity

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

p1

I G
(S
)

Binary case:

IG(S) = 1 − p2
1 − p2

2
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Information Gain

• Now that we canmeasure the purity at
each node in a tree, we can use this to
determine the quality of different splits

• We do this measuring the Information
Gain of a split

Gain(S, 𝜃, d) = I(S)−
(
|Sl |
|S| I(Sl) +

|Sr |
|S| I(Sr)

)
Here |S| = |Sl | + |Sr |

x2

x1

𝜃1

|S| = 10
|Sl | = 4
|Sr | = 6
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Information Gain

• Now that we canmeasure the purity at
each node in a tree, we can use this to
determine the quality of different splits

• We do this measuring the Information
Gain of a split

Gain(S, 𝜃, d) = I(S)−
(
|Sl |
|S| I(Sl) +

|Sr |
|S| I(Sr)

)
Here |S| = |Sl | + |Sr |

x2

x1

𝜃2

|S| = 10
|Sl | = 7
|Sr | = 3

Different splits will result in different
Information Gain
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Choosing the Best Split
• Evaluate the Information Gain for each feature dimension and threshold pair at a

given node

• Choose the pair with the largest gain

• If trying all combinations is impractical, one can choose the best pair from a random
subset
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Stopping Criteria
• A tree can always classify training examples perfectly, i.e.

◦ Keep splitting each node until there is only one example at each leaf
◦ These ‘singleton’ nodes will be pure

• This will result in overfitting to the training data, i.e. the model will not generalise
well to new data
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Avoiding Overfitting

• Introduce an additional hyperparameter
◦ Maximum tree depth
◦ Minimum number of datapoints per node
◦ Minimum information gain

• Grow the tree to full depth, and then
‘prune’ it
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Additional Topics

Regression Trees
• We can also model continuous targets using regression trees, i.e. y ∈ R
• The tree models data locally as a piece‑wise constant function, where it stores a

different mean value ȳi at each leaf node

𝜃1 𝜃2

ȳ1

ȳ2

ȳ3

0 2 4 6 8 10
0

2

4

x1
y
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Regression Criteria

• In the case of regression, our ground
truth targets are continuous values

• As a result, we require a different
definition of node purity

IR(S) =
1
|S|

∑
y ∈ S

(y − ȳ)2

• At each leaf we store the mean of all the
datapoints that arrived at the node

ȳ =
1
|S|

∑
y ∈ S

y

Regression Impurity

−2 −1 0 1 2
0

1

2

3

4

I R
(S
)
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Discrete Features
• Decision trees can handle both continuous or discrete (i.e. categorical) features

• In practice, popular implementations may not support natively

• For non‑ordinal categorical variables it is possible to transform them using a one‑hot
encoding
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Trees are Interpretable

 

petal length (cm) ≤ 2.45
gini = 0.6667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
gini = 0.0425
samples = 46

value = [0, 1, 45]
class = virginica

petal width (cm) ≤ 1.65
gini = 0.0408
samples = 48

value = [0, 47, 1]
class = versicolor

petal width (cm) ≤ 1.55
gini = 0.4444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 47

value = [0, 47, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

sepal length (cm) ≤ 6.95
gini = 0.4444
samples = 3

value = [0, 2, 1]
class = versicolor

sepal length (cm) ≤ 5.95
gini = 0.4444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

gini = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

gini = 0.0
samples = 2

value = [0, 0, 2]
class = virginica

 

Image credit: https://scikit‑learn.org/stable/modules/tree.html
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Ensembles of Trees
• Grow an ensemble of K different decision trees:

◦ Pick a random subset of the data
◦ Train a decision tree on this data

• When splitting, choose a random subset of features

◦ Repeat this K different times

• Given a new datapoint x at test time:
◦ Classify x separately using each tree
◦ Combine the predictions from each individual tree for the final output, e.g. using the

majority vote

• Simple, but can be very effective
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