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Regression



The Regression Problem
• For classification problems the target is discrete, i.e. y ∈ {1, ...,C}
• For regression problems the target is continuous, i.e. y ∈ R

• For linear regression the relationship between the features x and the target y is linear
• Although this is simple andmay appear limited, it is

◦ More powerful than you would expect
◦ The basis for more complex nonlinear methods
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Example Regression Problems
• Robot inverse dynamics: predicting what torques are needed to drive a robot arm

along a given trajectory

• Electricity load forecasting: generating hourly forecasts days in advance

• Predicting staffing requirements at help desks based on historical data and product
and sales information

• Predicting the time to failure of equipment based on utilization and environmental
conditions

• Predicting the depth of objects in an image

 

 

 

 



The LinearModel
• In simple linear regression we have a scalar input x and a scalar output

f(x;w) = wo + w1x
= w⊺𝜙 (x) i.e. the dot product

where w = [w0,w1]⊺ and 𝜙 (x) = [1, x]⊺

• We use the notation 𝜙 (x) to make generalisation easy later

 

 

 

 



Simple Linear Regression Example
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Simple Linear Regression Example
y

x

The red line depicts our linear fit to the data with two weights/parameters,
intercept w0 and slope w1.

 

 

 

 



Multiple Linear Regression
• Inmultiple linear regression we have a vector x of inputs and a scalar output

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)

where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

 

 

 

 



Multiple Linear Regression

x1

x2

y

In 2D, instead of a line, we have a plane.
In higher dimensions, this would be a hyperplane.

 

 

 

 



Multiple Linear Regression - Example
• Given information about a local habitat, the task is to predict how tall a tree will be

ten years after being planted

 

 

 

 

 

 



Multiple Linear Regression - Example
• Given information about a local habitat, the task is to predict how tall a tree will be

ten years after being planted

• yi the height of a tree at location i
• xi are features describing that habitat at location i

◦ x1 is the average rainfall
◦ x2 is the average temperature
◦ x3 is the percentage of a particular nutrient in the soil

• Wewill assume there is a linear relationship between these features and the target

ŷ = wo + w1x1 + w3x3 + w3x3

 

 

 

 



Interpreting theModelWeights

• Can we interpret the model weights?

ŷ = wo + w1x1 + w3x3 + w3x3

• The solvedweights tell us the contribution of each feature to the final prediction, e.g.
◦ A weight that is close to 0 indicates that that feature does not influence the output
◦ A large positive value, indicates that there is a strong positive relationship
◦ A large negative value, indicates that there is a strong negative relationship

• However, need to ensure that the data is standardised so that the scale of each
feature is similar
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Standardising the Data
• The input features may have very different scales, i.e. small versus large numbers

• To ensure that we can interpret the relative model weights across the different
dimensions it is advisable to standardise the data

• This simply involves computing the mean and standard deviation for each feature
dimension from the data the training set

• We then subtract this mean and divide by this standard deviation for the data in both
the training and test sets
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Fitting theModel to Data



Fitting the Linear RegressionModel to Data
• Assume we are given a training set of N pairs {(xi, yi)}N

i=1

• We can write these out using matrix notation:

Φ =


1 x11 x12 ... x1D
1 x21 x22 ... x2D
...

...
...

...
...

1 xN1 xN2 ... xND


y =


y1
y2
...

yN


• This designmatrix Φ is of size N × (D + 1) and an entry xij is the j’th component of

the training input xi

• Thus, ŷ = Φw is the model’s predicted outputs for the training inputs

 

 

 

 



Solving forModelWeights
• This looks like something we have seen in linear algebra:

y = Φw

• We know y for our training data and the entries of Φ, but we do not know w

• So why not take w = Φ−1y?
• Three reasons:

◦ Φ is not square. Its size is N × (D + 1)
◦ The system is over constrained ‑ (N equations for D + 1 weights)
◦ The data has noise
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Measuring ‘Goodness of Fit’
• Wewant a loss function that can tell us how good our fit is.

• One intuitive option is the Sum of Squared Errors (SSE):

LSSE(w) =
N∑

i=1
(yi − ŷi)2

=
N∑

i=1
(yi − w⊺𝜙 (xi))2

• This penalises large mistakes y − ŷ more than small ones

 

 

 

 



Measuring ‘Goodness of Fit’
• Different models (i.e. choices of weights w) will result in different loss values
• For example:

◦ For y = −0.31 + 0.57x, the SSE = 0.25
◦ For y = 1.37 + 0.00x, the SSE = 3.61
◦ For y = 2.50 − 0.50x, the SSE = 12.63

y

x

 

 

 

 



Error Surface
• For 1D data we can visualise the error for each set of possible weights
• Here, the minimum of this convex error surface is indicated by the values at x
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Fitting the LinearModel to Data
• We can write out our loss for the training data as:

LSSE(w) =
N∑

i=1
(yi − w⊺𝜙 (xi))2

= | |y − Φw| |2

= (y − Φw)⊺ (y − Φw)

• To solve for w, we take the partial derivative of LSSE(w) wrt w and set it to 0, i.e.
𝜕LSSE (w)

𝜕w = 0
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Deriving the Least Squares Solution - 1
• We begin by rewriting the terms of the SSE loss:

LSSE(w) = (y − Φw)⊺ (y − Φw)
= (y⊺ − w⊺Φ⊺)(y − Φw)
= y⊺y − y⊺Φw − w⊺Φ⊺y + w⊺Φ⊺Φw
= y⊺y − 2w⊺Φ⊺y + w⊺Φ⊺Φw

 

 

 

 



Deriving the Least Squares Solution - 2
• Next we take the partial derivative:

𝜕LSSE(w)
𝜕w =

𝜕

𝜕w [y⊺y − 2w⊺Φ⊺y + w⊺Φ⊺Φw]

• We can do this one part at a time:

𝜕 (y⊺y)
𝜕w = 0

𝜕 (−2w⊺Φ⊺y)
𝜕w = −2Φ⊺y

𝜕 (w⊺Φ⊺Φw)
𝜕w = 2Φ⊺Φw
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Deriving the Least Squares Solution - 3
• From the previous slide we obtained:

𝜕LSSE(w)
𝜕w = −2Φ⊺y + 2Φ⊺Φw

• We set this to 0 to find the closed‑form solution, i.e. 𝜕LSSE (w)
𝜕w = 0:

0 = −2Φ⊺y + 2Φ⊺Φw
2Φ⊺Φw = 2Φ⊺y
Φ⊺Φw = Φ⊺y

w = (Φ⊺Φ)−1Φ⊺y
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Sensitivity to Outliers
• Linear regression is sensitive to outliers
• Suppose y = 0.5x + 𝜖, where 𝜖 is some noise

y

x

.

.

 

 

 

 



Sensitivity to Outliers
• What happens if we add an ‘outlier‘ at x=0.5 and y=2.5?
• Here, we are simply adding one new training example

y

x

.

.

 

 

 

 



Diagnositics
• Graphical diagnostics can be useful for checking:

◦ Is the relationship obviously nonlinear? Look for structure in errors?
◦ Are there obvious outliers?

• The goal is not to find all problems ‑ this is difficult. The goal is to find obvious ones

 

 

 

 



Nonlinear Regression



Nonlinear Regression
y

x

What if there is a nonlinear relationship between your features and the target you wish
to predict?

 

 

 

 



Nonlinear Regression - Transforming Inputs
• Up until now we have set 𝜙 (x) = [1, x]⊺

• However, we can transform our inputs in different ways

• One example is polynomial regression, 𝜙 (x) = [1, x, x2, ..., xM]⊺

• Here, the dimensionality of our weights w will be the same as 𝜙 (x)
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Polynomial Regression
y

x

M = 1
𝜙 (x) = [1, x]⊺

Equivalent to simple linear regression.

y

x

M = 2
𝜙 (x) = [1, x, x2]⊺

Eq

 

 

 

 



Polynomial Regression
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Polynomial Regression
y

x

M = 3
𝜙 (x) = [1, x, x2, x3]⊺

Eq

y

x

M = 12
𝜙 (x) = [1, x, x2, ..., x12]⊺

We have overfit the training data.

 

 

 

 



Polynomial Regression
y

x

M = 3
𝜙 (x) = [1, x, x2, x3]⊺

Eq

y

x

M = 12
𝜙 (x) = [1, x, x2, ..., x12]⊺

We have overfit the training data.

 

 

 

 



Basis Expansion
• We can easily transform the original features x non‑linearly into 𝜙 (x) and perform

linear regression on the transformed features

• For example, we can use a set of M basis functions
𝜙 (x) = [1,𝜓1(x),𝜓2(x), ...,𝜓M(x)]⊺

• Each of these basis functions takes a vector as input and outputs a scalar value

 

 

 

 



Basis Expansion
• Now our designmatrix is of size N × (M + 1), where we have M basis functions

Φ =


1 𝜓1(x1) 𝜓2(x1) ... 𝜓M(x1)
1 𝜓1(x2) 𝜓2(x2) ... 𝜓M(x2)
...

...
...

...
...

1 𝜓1(xN) 𝜓2(xN) ... 𝜓M(xN)


• Again, we let y = [y1, ..., yN]⊺

• We can thenminimise LSSE(w) = | |y − Φw| |2 using the same analytical solution as
before

 

 

 

 



Radial Basis Functions
• One popular choice of basis functions are Radial Basis Functions (RBFs)

• Each RBF𝜓 ()m has two parameters: a centre cm and a width 𝜎2
m, and outputs a single

scalar

𝜓m(x) = exp

(
−0.5 | |x − cm | |2

𝜎2
m

)

• One needs to position each basis function at a specified centre location with a given
width

• There are many ways to do this but choosing a subset of the datapoints as centres is
one approach that is quite effective
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Radial Basis Functions - Example
y

x

• In this example, we have a RBF centred on each training point and we use the same
value of 𝜎2 for each

• The quality of the fit can strongly depend on the choice of RBF parameters

 

 

 

 



Dealing withMultiple Outputs
• Suppose there are K different targets for each input x, i.e. y ∈ RK

• We introduce a different wk for each target dimension, and do regression separately
for each one

 

 

 

 



Summary
• Linear regression is often useful out of the box

• It is more useful than it would be seem because linear means linear in the weights.
You can do a nonlinear transform of the data first, e.g., polynomial, RBF, etc.

• The solution for the model weights is computationally efficient to obtain
(pseudo‑inverse)

• Danger of overfitting, especially with many features or basis functions
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