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Regression
Oisin Mac Aodha e Siddharth N.
The Regression Problem Example Regression Problems
® For classification problems the target is ,ie.yed{l,..,C} ® Robot inverse dynamics: predicting what torques are needed to drive a robot arm

® Forregression problems the target is Jie.yeR along a given trajectory

o - ine: . .
® Forlinear regression the relationship between the features xand the target yis linear Electricity load forecasting: generating hourly forecasts days in advance
® Predicting staffing requirements at help desks based on historical data and product

® Although this is simple and may appear limited, it is
and sales information

o More powerful than you would expect
o The basis for more complex nonlinear methods ® Predicting the time to failure of equipment based on utilization and environmental

conditions

® Predicting the depth of objects in an image
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The Linear Model

® Insimple linear regression we have a scalar input zand a scalar output

[z, w) = w, + wrz

= w'¢(x)

where w = [wp, w1]T and ¢(z) = [1, 2] T

® \We use the notation ¢ (x) to make generalisation easy later
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Simple Linear Regression Example

The red line depicts our linear fit to the data with two weights/parameters,
intercept wy and slope w.
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Simple Linear Regression Example

Y
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Multiple Linear Regression
® |n multiple linear regression we have a vector x of inputs and a scalar output

fl,w) = w, + wiz + ... + wpTp

D

= Wy + Z WqTq
d=1

= w'¢(x)

where w = [wg, wy, ..., wp] T and ¢(x) = [1, 21, ..., zp]T
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Multiple Linear Regression

Y

44l

2

In 2D, instead of a line, we have a plane.
In higher dimensions, this would be a hyperplane.

@ informatics

Multiple Linear Regression - Example

® Given information about a local habitat, the task is to predict how tall a tree will be
ten years after being planted

® y, the height of a tree at location ¢

® 1, are features describing that habitat at location ¢
o 1 is the average rainfall
o 1 is the average temperature
o 3 is the percentage of a particular nutrient in the soil

® We will assume there is a linear relationship between these features and the target

U= w,+ w x| + w3T3 + W33
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Multiple Linear Regression - Example

® Given information about a local habitat, the task is to predict how tall a tree will be
ten years after being planted
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Interpreting the Model Weights
® Can we interpret the model weights?

U= w,+ w x| + w3T3 + W33

® The solved weights tell us the contribution of each feature to the final prediction, e.g.
o Aweight thatis close to 0 indicates that that feature does not influence the output
o Alarge positive value, indicates that there is a strong positive relationship
o Alarge negative value, indicates that there is a strong negative relationship

® However, need to ensure that the data is standardised so that the scale of each

feature is similar
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Standardising the Data

® The input features may have very different scales, i.e. small versus large numbers

® To ensure that we can interpret the relative model weights across the different
dimensions it is advisable to standardise the data

® This simply involves computing the and for each feature
dimension from the data the training set

® \We then subtract this mean and divide by this standard deviation for the data in both
the training and test sets

@ .m( UNIVERSITY wwl\.uvl\u H ll
@ informatics

Fitting the Linear Regression Model to Data

® Assume we are given a training set of N pairs {(x;, yi)}ﬁl

® \We can write these out using matrix notation:

1 21 m2 ... mp (7

1 a1 a9 ... mp Y2
o= . y=

1 v o2 ... Tap YN

® This design matrix @ is of size N x (D + 1) and an entry z;; is the j’th component of
the training input x;

® Thus, § = dwis the model’s predicted outputs for the training inputs
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Fitting the Model to Data

Solving for Model Weights
® This looks like something we have seen in linear algebra:
y=dw
® We know y for our training data and the entries of @, but we do not know w

® So why not take w= &~ 14?

® Three reasons:
o ®isnotsquare. Itssizeis Nx (D+1)
o The system is over constrained - (N equations for D + 1 weights)
o The data has noise
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Measuring ‘Goodness of Fit’

® We want a loss function that can tell us how good our fit is.

® One intuitive option is the Sum of Squared Errors (SSE):

N
Lsp(w) = > (yi = )
=1

N
= > (yi— wp(m))”
=1

® This penalises large mistakes y — § more than small ones
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Error Surface

® For 1D data we can visualise the error for each set of possible weights
® Here, the minimum of this convex error surface is indicated by the values at x
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Measuring ‘Goodness of Fit’

o Different models (i.e. choices of weights w) will result in different loss values

® Forexample:
o Fory=-0.31+0.57x,the SSE=0.25

o For ,the SSE = 3.61
o Fory=2.50 - 0.50z, the SSE = 12.63

y °
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Fitting the Linear Model to Data

® \We can write out our loss for the training data as:

N
Lssi(w) = )" (yi - w' (:))?
=1

= ||y - ouwl?
= (y—- Qw7 (y - dw)

® To solve for w, we take the partial derivative of Lgsg(w) wrt wand setitto0,i.e.

Lssp(w) _
el
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Deriving the Least Squares Solution - 1

® We begin by rewriting the terms of the SSE loss:

Lgsp(w) = (y— 2w) " (y - dw)
=(y" —w'®T)(y - dw)
=yTy—y ow-wdTy+ wdTdow
=y y—-2wdTy+ wdTdw
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Deriving the Least Squares Solution - 3
® From the previous slide we obtained:
oL
OLssp(W) _ _opryr 2070w
ow
® We set this to 0 to find the closed-form solution, i.e. ‘%%ﬁ;(“’) =0:
0=-20Ty+207Pw
207w =207y
PTOw=>PTy
w= (PT0) Ty
20
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Deriving the Least Squares Solution - 2

® Next we take the partial derivative:

oL 0
SS—E(H}) - — [yTy_ 2qu)Ty+ wT(I)Tq)w]
Jw ow

® We can do this one part at a time:

I(y'y 0
ow
(2w dTy) 0BT
ow a Y
O (wT®Tdw) 20T Daw
ow B
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Sensitivity to Outliers

® Linear regression is sensitive to outliers
® Suppose y = 0.5z + ¢, where ¢ is some noise

Y
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Sensitivity to Outliers

® What happens if we add an ‘outlier* at

® Here, we are simply adding one new training example
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Nonlinear Regression
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Diagnositics

® Graphical diagnostics can be useful for checking:
o |Is the relationship obviously nonlinear? Look for structure in errors?
o Are there obvious outliers?

® The goal is not to find all problems - this is difficult. The goal is to find obvious ones
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Nonlinear Regression
Y
°
°
o \ x
°
)
What if there is a nonlinear relationship between your features and the target you wish
to predict?
24
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Nonlinear Regression - Transforming Inputs

® Up until now we haveset ¢(z) = [1,z]T

® However, we can transform our inputs in different ways

® One example is polynomial regression, ¢(z) = [1, z, 22, ..., 2M]7

® Here, the dimensionality of our weights w will be the same as ¢(x)
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Polynomial Regression
y y
) 3 z
M=3 M=12
d(z) = [1, 5,22 2°]7 d(x) = [L 22, ..., z'2]7
We have overfit the training data.
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Polynomial Regression

y y
M=1 M=2
$(x) = [1,2]7 ¢(z) = [1,52%]7

Equivalent to simple linear regression.
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Basis Expansion

® We can easily transform the original features  non-linearly into ¢(x) and perform
linear regression on the transformed features

® For example, we can use a set of M basis functions
¢(x) = [1,y1(2), Y2(), ... ynr(2) ] 7

® Each of these basis functions takes a vector as input and outputs a scalar value
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Basis Expansion

® Now our design matrix is of size N x (M + 1), where we have M basis functions

1 yi(m) Yo(®) ... vYu(xr)
1 (@) Yo(m) ... vYm(a)

L yi(zn) Yo(zn) ... Ym(zy)

® Again,welety = [y, ... yn|T
® We can then minimise Lgsz(w) = ||y — ®w||? using the same analytical solution as
before
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Radial Basis Functions - Example

Y

® |n this example, we have a RBF centred on each training point and we use the same
value of ¢ for each

® The quality of the fit can strongly depend on the choice of RBF parameters
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Radial Basis Functions
® One popular choice of basis functions are Radial Basis Functions (RBFs)
® Each RBF ¢/(),, has two parameters: a centre c,, and a width 0'72n, and outputs a single

Yrn(@) = exp (05M)

m

scalar

® One needs to position each basis function at a specified centre location with a given
width

® There are many ways to do this but choosing a subset of the datapoints as centres is
one approach that is quite effective
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Dealing with Multiple Outputs

® Suppose there are K different targets for each input z, i.e. y € RX

® We introduce a different wy, for each target dimension, and do regression separately
for each one
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Summary

® Linear regression is often useful out of the box

® |tis more useful than it would be seem because linear means linear in the weights.
You can do a nonlinear transform of the data first, e.g., polynomial, RBF, etc.

® The solution for the model weights is computationally efficient to obtain
(pseudo-inverse)

® Danger of overfitting, especially with many features or basis functions
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