

 Applied Machine Learning (AML)
Logistic Regression

Oisin Mac Aodha • Siddharth N.

Linear Classification

Generative Versus Discriminative Classifiers
• Generative classifiers (e.g. Naive Bayes) model how a class ‘generated’ the feature

vector p(x|y)
• Which we then used for classification

p(y|x) ∝ p(x|y)p(y)

• In contrast, discriminative classifiers do not waste effort modelling the generative
process

• Instead, they model the posterior p(y|x) directly

Generative Versus Discriminative Classifiers
• Generative classifiers (e.g. Naive Bayes) model how a class ‘generated’ the feature

vector p(x|y)
• Which we then used for classification

p(y|x) ∝ p(x|y)p(y)

• In contrast, discriminative classifiers do not waste effort modelling the generative
process

• Instead, they model the posterior p(y|x) directly

Generative Versus Discriminative Classifiers
• Generative approaches model the class conditional densities p(x|y) and priors p(y)
• Discriminative approaches directly model the posterior p(y|x)

4 2 0 2 4 6

4

2

0

2

4

6

4 2 0 2 4 6

4

2

0

2

4

6

Generative Classifier Discriminative Classifier

Generative Versus Discriminative Classifiers
• Generative approaches model the class conditional densities p(x|y) and priors p(y)
• Discriminative approaches directly model the posterior p(y|x)

4 2 0 2 4 6

4

2

0

2

4

6

4 2 0 2 4 6

4

2

0

2

4

6

Generative Classifier Discriminative Classifier

The Linear Classification Problem
• In binary linear classificationwe are

given some input features x, with
associated class labels y

• The goal is to estimate the parameters w
of a hyperplane that can separate the
data into the two classes

• The decision boundary is the boundary
between these two regions, i.e. where
the two classes are ‘tied’

x2

x1

The Linear Classification Problem
• In binary linear classificationwe are

given some input features x, with
associated class labels y

• The goal is to estimate the parameters w
of a hyperplane that can separate the
data into the two classes

• The decision boundary is the boundary
between these two regions, i.e. where
the two classes are ‘tied’

x2

x1

The Linear Classification Problem
• In binary linear classificationwe are

given some input features x, with
associated class labels y

• The goal is to estimate the parameters w
of a hyperplane that can separate the
data into the two classes

• The decision boundary is the boundary
between these two regions, i.e. where
the two classes are ‘tied’

x2

x1

Linear Classifiers in Higher Dimensions
• In 2D, the decision boundary is represented as a line

• In 3D, the decision boundary is represented as a plane
• In higher dimensions, it is a hyperplane

x2

x1

x1

x2

x3

Linear Classifiers in Higher Dimensions
• In 2D, the decision boundary is represented as a line
• In 3D, the decision boundary is represented as a plane

• In higher dimensions, it is a hyperplane

x2

x1 x1

x2

x3

Linear Classifiers in Higher Dimensions
• In 2D, the decision boundary is represented as a line
• In 3D, the decision boundary is represented as a plane
• In higher dimensions, it is a hyperplane

x2

x1 x1

x2

x3

Linear ClassificationModel
• In binary linear classification we have a set of input features vector x ∈ RD and

binary class labels y ∈ {0, 1}

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)
where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

• Tomake a prediction we can threshold the output of the function

ŷ =

{
1 if w⊺𝜙 (x) >= 0
0 if w⊺𝜙 (x) < 0

Linear ClassificationModel
• In binary linear classification we have a set of input features vector x ∈ RD and

binary class labels y ∈ {0, 1}

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)
where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

• Tomake a prediction we can threshold the output of the function

ŷ =

{
1 if w⊺𝜙 (x) >= 0
0 if w⊺𝜙 (x) < 0

Linear ClassificationModel
• In binary linear classification we have a set of input features vector x ∈ RD and

binary class labels y ∈ {0, 1}

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)
where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

• Tomake a prediction we can threshold the output of the function

ŷ =

{
1 if w⊺𝜙 (x) >= 0
0 if w⊺𝜙 (x) < 0

Linear ClassificationModel
• In binary linear classification we have a set of input features vector x ∈ RD and

binary class labels y ∈ {0, 1}

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)

where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

• Tomake a prediction we can threshold the output of the function

ŷ =

{
1 if w⊺𝜙 (x) >= 0
0 if w⊺𝜙 (x) < 0

Linear ClassificationModel
• In binary linear classification we have a set of input features vector x ∈ RD and

binary class labels y ∈ {0, 1}

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)
where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

• Tomake a prediction we can threshold the output of the function

ŷ =

{
1 if w⊺𝜙 (x) >= 0
0 if w⊺𝜙 (x) < 0

Linear ClassificationModel
• In binary linear classification we have a set of input features vector x ∈ RD and

binary class labels y ∈ {0, 1}

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)
where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

• Tomake a prediction we can threshold the output of the function

ŷ =

{
1 if w⊺𝜙 (x) >= 0
0 if w⊺𝜙 (x) < 0

Geometric Perspective

• w⊺𝜙 (x) = 0 is the decision boundary

• Let w̃ be the weights without the bias w0,
then w̃ is normal to the decision boundary

• If w0 = 0, w⊺𝜙 (x) = 0 is a line passing
though the origin and orthogonal to w̃

• When w0 ≠ 0, it shifts the location of the
decision boundary

• If p is the point on the boundary closest to
the origin, then the normal distance from
the boundary to the origin is |w0 |

| |w̃ | |

x2

x1

w⊺𝜙 (x) = 0

w̃
|w0 |
| |w̃ | | p

Geometric Perspective
• w⊺𝜙 (x) = 0 is the decision boundary

• Let w̃ be the weights without the bias w0,
then w̃ is normal to the decision boundary

• If w0 = 0, w⊺𝜙 (x) = 0 is a line passing
though the origin and orthogonal to w̃

• When w0 ≠ 0, it shifts the location of the
decision boundary

• If p is the point on the boundary closest to
the origin, then the normal distance from
the boundary to the origin is |w0 |

| |w̃ | |

x2

x1

w⊺𝜙 (x) = 0

w̃
|w0 |
| |w̃ | | p

Geometric Perspective
• w⊺𝜙 (x) = 0 is the decision boundary

• Let w̃ be the weights without the bias w0,
then w̃ is normal to the decision boundary

• If w0 = 0, w⊺𝜙 (x) = 0 is a line passing
though the origin and orthogonal to w̃

• When w0 ≠ 0, it shifts the location of the
decision boundary

• If p is the point on the boundary closest to
the origin, then the normal distance from
the boundary to the origin is |w0 |

| |w̃ | |

x2

x1

w⊺𝜙 (x) = 0

w̃

|w0 |
| |w̃ | | p

Geometric Perspective
• w⊺𝜙 (x) = 0 is the decision boundary

• Let w̃ be the weights without the bias w0,
then w̃ is normal to the decision boundary

• If w0 = 0, w⊺𝜙 (x) = 0 is a line passing
though the origin and orthogonal to w̃

• When w0 ≠ 0, it shifts the location of the
decision boundary

• If p is the point on the boundary closest to
the origin, then the normal distance from
the boundary to the origin is |w0 |

| |w̃ | |

x2

x1

w⊺𝜙 (x) = 0

w̃
|w0 |
| |w̃ | |

p

Geometric Perspective
• w⊺𝜙 (x) = 0 is the decision boundary

• Let w̃ be the weights without the bias w0,
then w̃ is normal to the decision boundary

• If w0 = 0, w⊺𝜙 (x) = 0 is a line passing
though the origin and orthogonal to w̃

• When w0 ≠ 0, it shifts the location of the
decision boundary

• If p is the point on the boundary closest to
the origin, then the normal distance from
the boundary to the origin is |w0 |

| |w̃ | |

x2

x1

w⊺𝜙 (x) = 0

w̃
|w0 |
| |w̃ | | p

Linear Separability
• If we can find a hyperplane to separate the data based on the class labels, the

problem is said to be linearly separable

x2

x1

Linearly separable

x2

x1

Linearly separable

x2

x1

Linearly non‑separable

Linear Separability
• If we can find a hyperplane to separate the data based on the class labels, the

problem is said to be linearly separable

x2

x1

Linearly separable

x2

x1

Linearly separable

x2

x1

Linearly non‑separable

Linear Separability
• If we can find a hyperplane to separate the data based on the class labels, the

problem is said to be linearly separable

x2

x1

Linearly separable

x2

x1

Linearly separable

x2

x1

Linearly non‑separable

Linear Separability
• If we can find a hyperplane to separate the data based on the class labels, the

problem is said to be linearly separable

x2

x1

Linearly separable

x2

x1

Linearly separable

x2

x1

Linearly non‑separable

Linear Separability
• If we can find a hyperplane to separate the data based on the classes, the problem is

linearly separable

• Causes of non perfect separation
◦ The linear model is too simple
◦ Simple features that do not account for all variations
◦ There is noise in the input features
◦ There are errors in the class labels

Logistic Regression

Logistic Regression
• One problemwith our linear classifier, f(x;w) = w⊺𝜙 (x), is that the outputs are

unbounded, i.e. f(x;w) ∈ [−∞,∞]

• Wewould like to model the posterior p(y = 1|x) directly
• To do so, our model predictions need to be in the range [0, 1]
• One solution is to ‘squash’ outputs of f(x;w) so that they remain in the range [0, 1]

Logistic Regression
• One problemwith our linear classifier, f(x;w) = w⊺𝜙 (x), is that the outputs are

unbounded, i.e. f(x;w) ∈ [−∞,∞]
• Wewould like to model the posterior p(y = 1|x) directly
• To do so, our model predictions need to be in the range [0, 1]

• One solution is to ‘squash’ outputs of f(x;w) so that they remain in the range [0, 1]

Logistic Regression
• One problemwith our linear classifier, f(x;w) = w⊺𝜙 (x), is that the outputs are

unbounded, i.e. f(x;w) ∈ [−∞,∞]
• Wewould like to model the posterior p(y = 1|x) directly
• To do so, our model predictions need to be in the range [0, 1]
• One solution is to ‘squash’ outputs of f(x;w) so that they remain in the range [0, 1]

The Logistic Function
• We need a function that returns probabilities, i.e. its outputs are between 0 and 1

• The logistic function provides this

𝜎 (z) = 1
1 + exp(−z)

• As z goes from −∞ to∞, 𝜎 (z) goes from 0 to 1,
• It has a ‘sigmoid’ shape, i.e. an ‘S’ like shape

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

z

f(
z)

The Logistic Function
• We need a function that returns probabilities, i.e. its outputs are between 0 and 1
• The logistic function provides this

𝜎 (z) = 1
1 + exp(−z)

• As z goes from −∞ to∞, 𝜎 (z) goes from 0 to 1,
• It has a ‘sigmoid’ shape, i.e. an ‘S’ like shape

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

z

f(
z)

The Logistic Function
• We need a function that returns probabilities, i.e. its outputs are between 0 and 1
• The logistic function provides this

𝜎 (z) = 1
1 + exp(−z)

• As z goes from −∞ to∞, 𝜎 (z) goes from 0 to 1,
• It has a ‘sigmoid’ shape, i.e. an ‘S’ like shape

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

z

f(
z)

Understanding the Logistic Function
• Here we provide some intuition for how the logistic function works

𝜎 (z) = 1
1 + exp(−z) =

exp(z)
exp(z) + 1

• As z becomes very negativewe get

𝜎 (z) = small
1 + small

∼ 0

• As z becomes very positivewe get

𝜎 (z) = large
1 + large

∼ 1

Understanding the Logistic Function
• Here we provide some intuition for how the logistic function works

𝜎 (z) = 1
1 + exp(−z)

=
exp(z)

exp(z) + 1

• As z becomes very negativewe get

𝜎 (z) = small
1 + small

∼ 0

• As z becomes very positivewe get

𝜎 (z) = large
1 + large

∼ 1

Understanding the Logistic Function
• Here we provide some intuition for how the logistic function works

𝜎 (z) = 1
1 + exp(−z) =

exp(z)
exp(z) + 1

• As z becomes very negativewe get

𝜎 (z) = small
1 + small

∼ 0

• As z becomes very positivewe get

𝜎 (z) = large
1 + large

∼ 1

Understanding the Logistic Function
• Here we provide some intuition for how the logistic function works

𝜎 (z) = 1
1 + exp(−z) =

exp(z)
exp(z) + 1

• As z becomes very negativewe get

𝜎 (z) = small
1 + small

∼ 0

• As z becomes very positivewe get

𝜎 (z) = large
1 + large

∼ 1

Understanding the Logistic Function
• Here we provide some intuition for how the logistic function works

𝜎 (z) = 1
1 + exp(−z) =

exp(z)
exp(z) + 1

• As z becomes very negativewe get

𝜎 (z) = small
1 + small

∼ 0

• As z becomes very positivewe get

𝜎 (z) = large
1 + large

∼ 1

Shape of the Logistic Function
• Modifying the input to the logistic function changes the shape of the function, i.e. it

changes the output

𝜎 (z) = 1
1 + exp(−z)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x + 0

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x − 2

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = 0.5x

Shape of the Logistic Function
• Modifying the input to the logistic function changes the shape of the function, i.e. it

changes the output

𝜎 (z) = 1
1 + exp(−z)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x + 0

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x − 2

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = 0.5x

Shape of the Logistic Function
• Modifying the input to the logistic function changes the shape of the function, i.e. it

changes the output

𝜎 (z) = 1
1 + exp(−z)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x + 0

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x − 2

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = 0.5x

Shape of the Logistic Function
• Modifying the input to the logistic function changes the shape of the function, i.e. it

changes the output

𝜎 (z) = 1
1 + exp(−z)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x + 0

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x − 2

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = 0.5x

Logistic Regression
• Logistic regression = linear weights + logistic squashing function

• Wemodel the class probabilities as

p(y = 1|x) = 𝜎 (w⊺𝜙 (x))

and thus
p(y = 0|x) = 1 − 𝜎 (w⊺𝜙 (x))

• 𝜎 (z) = 0.5 when z = 0, hence the decision boundary is given by w⊺𝜙 (x) = 0
• The decision boundary is a D − 1 hyperplane for a D dimensional input space

• Despite the name, this is a model for classification not regression

Logistic Regression
• Logistic regression = linear weights + logistic squashing function

• Wemodel the class probabilities as

p(y = 1|x) = 𝜎 (w⊺𝜙 (x))

and thus
p(y = 0|x) = 1 − 𝜎 (w⊺𝜙 (x))

• 𝜎 (z) = 0.5 when z = 0, hence the decision boundary is given by w⊺𝜙 (x) = 0
• The decision boundary is a D − 1 hyperplane for a D dimensional input space

• Despite the name, this is a model for classification not regression

Logistic Regression
• Logistic regression = linear weights + logistic squashing function

• Wemodel the class probabilities as

p(y = 1|x) = 𝜎 (w⊺𝜙 (x))

and thus
p(y = 0|x) = 1 − 𝜎 (w⊺𝜙 (x))

• 𝜎 (z) = 0.5 when z = 0, hence the decision boundary is given by w⊺𝜙 (x) = 0
• The decision boundary is a D − 1 hyperplane for a D dimensional input space

• Despite the name, this is a model for classification not regression

Logistic Regression
• Logistic regression = linear weights + logistic squashing function

• Wemodel the class probabilities as

p(y = 1|x) = 𝜎 (w⊺𝜙 (x))

and thus
p(y = 0|x) = 1 − 𝜎 (w⊺𝜙 (x))

• 𝜎 (z) = 0.5 when z = 0, hence the decision boundary is given by w⊺𝜙 (x) = 0
• The decision boundary is a D − 1 hyperplane for a D dimensional input space

• Despite the name, this is a model for classification not regression

Logistic Regression
• Logistic regression = linear weights + logistic squashing function

• Wemodel the class probabilities as

p(y = 1|x) = 𝜎 (w⊺𝜙 (x))

and thus
p(y = 0|x) = 1 − 𝜎 (w⊺𝜙 (x))

• 𝜎 (z) = 0.5 when z = 0, hence the decision boundary is given by w⊺𝜙 (x) = 0
• The decision boundary is a D − 1 hyperplane for a D dimensional input space

• Despite the name, this is a model for classification not regression

Decision Boundary for Logistic Regression
• The decision boundary for logistic

regression is where
p(y = 1|x;w) = p(y = 0|x) = 0.5

• The decision boundary occurs where
w⊺𝜙 (x) = 0

• Logistic regression has a linear decision
boundary

−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

p(y = 1|x)
p(y = 0|x)

w⊺𝜙 (x) = 0

Decision Boundary for Logistic Regression
• The decision boundary for logistic

regression is where
p(y = 1|x;w) = p(y = 0|x) = 0.5

• The decision boundary occurs where
w⊺𝜙 (x) = 0

• Logistic regression has a linear decision
boundary

−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

p(y = 1|x)
p(y = 0|x)

w⊺𝜙 (x) = 0

Decision Boundary for Logistic Regression
• The decision boundary for logistic

regression is where
p(y = 1|x;w) = p(y = 0|x) = 0.5

• The decision boundary occurs where
w⊺𝜙 (x) = 0

• Logistic regression has a linear decision
boundary

−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

p(y = 1|x)
p(y = 0|x)

w⊺𝜙 (x) = 0

Decision Boundary for Logistic Regression
• The decision boundary for logistic

regression is where
p(y = 1|x;w) = p(y = 0|x) = 0.5

• The decision boundary occurs where
w⊺𝜙 (x) = 0

• Logistic regression has a linear decision
boundary

−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

p(y = 1|x)
p(y = 0|x)

w⊺𝜙 (x) = 0

Logistic Regression
• Let w̃ = [w1, ...,wD]⊺, be the weight vector without the bias term

• The direction of the vector w̃ affects the orientation of the hyperplane. The
hyperplane is perpendicular to w̃

• The bias parameter w0 shifts the position of the hyperplane, but does not alter the
orientation

• Themagnitude of the weight vector | |w| | effects how certain the classifications are

• For small | |w| |most of the probabilities within the region of the decision boundary
will be close to 0.5

• For large | |w| | probabilities in the same region will be close to 0 or 1

Logistic Regression
• Let w̃ = [w1, ...,wD]⊺, be the weight vector without the bias term
• The direction of the vector w̃ affects the orientation of the hyperplane. The

hyperplane is perpendicular to w̃

• The bias parameter w0 shifts the position of the hyperplane, but does not alter the
orientation

• Themagnitude of the weight vector | |w| | effects how certain the classifications are

• For small | |w| |most of the probabilities within the region of the decision boundary
will be close to 0.5

• For large | |w| | probabilities in the same region will be close to 0 or 1

Logistic Regression
• Let w̃ = [w1, ...,wD]⊺, be the weight vector without the bias term
• The direction of the vector w̃ affects the orientation of the hyperplane. The

hyperplane is perpendicular to w̃
• The bias parameter w0 shifts the position of the hyperplane, but does not alter the

orientation

• Themagnitude of the weight vector | |w| | effects how certain the classifications are

• For small | |w| |most of the probabilities within the region of the decision boundary
will be close to 0.5

• For large | |w| | probabilities in the same region will be close to 0 or 1

Logistic Regression
• Let w̃ = [w1, ...,wD]⊺, be the weight vector without the bias term
• The direction of the vector w̃ affects the orientation of the hyperplane. The

hyperplane is perpendicular to w̃
• The bias parameter w0 shifts the position of the hyperplane, but does not alter the

orientation

• Themagnitude of the weight vector | |w| | effects how certain the classifications are

• For small | |w| |most of the probabilities within the region of the decision boundary
will be close to 0.5

• For large | |w| | probabilities in the same region will be close to 0 or 1

Logistic Regression
• Let w̃ = [w1, ...,wD]⊺, be the weight vector without the bias term
• The direction of the vector w̃ affects the orientation of the hyperplane. The

hyperplane is perpendicular to w̃
• The bias parameter w0 shifts the position of the hyperplane, but does not alter the

orientation

• Themagnitude of the weight vector | |w| | effects how certain the classifications are

• For small | |w| |most of the probabilities within the region of the decision boundary
will be close to 0.5

• For large | |w| | probabilities in the same region will be close to 0 or 1

Impact ofWeights on Classification
• Here we visualise what happens to the predictions when we change the weights

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Input data

Impact ofWeights on Classification
• Here we visualise what happens to the predictions when we change the weights

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Input data

Impact ofWeights on Classification
• Here we visualise what happens to the predictions when we change the weights

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Input data

Impact ofWeights on Classification
• On the right we set the bias to w0 = 0

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [0.0, 1.4, 1.7]⊤

Zero bias

Impact ofWeights on Classification
• On the right we set the bias to w0 = 0

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [0.0, 1.4, 1.7]⊤

Zero bias

Impact ofWeights on Classification
• On the right we set the bias to w0 = −w0

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [2.3, 1.4, 1.7]⊤

Negative bias

Impact ofWeights on Classification
• On the right we set the bias to w0 = −w0

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [2.3, 1.4, 1.7]⊤

Negative bias

Impact ofWeights on Classification
• On the right we negate all the weights w = −w

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [2.3,−1.4,−1.7]⊤

Negative weights

Impact ofWeights on Classification
• On the right we negate all the weights w = −w

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [2.3,−1.4,−1.7]⊤

Negative weights

Impact ofWeights on Classification
• On the right we scale the weights by a constant w = cw

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−23.2, 13.6, 17.5]⊤

Scaled weights

Impact ofWeights on Classification
• On the right we scale the weights by a constant w = cw

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−23.2, 13.6, 17.5]⊤

Scaled weights

Learning Logistic Regression

Maximum Likelihood Estimation
• Wewant to estimate the parameters w of the logistic regression model using data

• Wewill do this viamaximum likelihood estimation

• Main steps:
◦ Write out the likelihood for the model
◦ Find the derivatives of the negative log likelihood w.r.t the parameters
◦ Adjust the parameters to minimise the negative log likelihood

Maximum Likelihood Estimation
• Wewant to estimate the parameters w of the logistic regression model using data

• Wewill do this viamaximum likelihood estimation
• Main steps:

◦ Write out the likelihood for the model
◦ Find the derivatives of the negative log likelihood w.r.t the parameters
◦ Adjust the parameters to minimise the negative log likelihood

Likelihood for Binary Classification
• We denote our dataset asD = {(x1, y1), (x2, y2), ...(xN, yN)}, where y ∈ {0, 1}
• Wewill assume data is independent and identically distributed (i.e. iid assumption)

• To simplify the notation, we will also assume that the bias term w0 is absorbed into
the weight vector, i.e. w = [w0,w1, ...,wD]⊺ and will let xn = [1, xn1, ..., xnD]⊺

• The likelihood is

p(D|w) =
N∏

n=1
p(y = yn |xn;w)

=
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

Likelihood for Binary Classification
• We denote our dataset asD = {(x1, y1), (x2, y2), ...(xN, yN)}, where y ∈ {0, 1}
• Wewill assume data is independent and identically distributed (i.e. iid assumption)

• To simplify the notation, we will also assume that the bias term w0 is absorbed into
the weight vector, i.e. w = [w0,w1, ...,wD]⊺ and will let xn = [1, xn1, ..., xnD]⊺

• The likelihood is

p(D|w) =
N∏

n=1
p(y = yn |xn;w)

=
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

Likelihood for Binary Classification
• We denote our dataset asD = {(x1, y1), (x2, y2), ...(xN, yN)}, where y ∈ {0, 1}
• Wewill assume data is independent and identically distributed (i.e. iid assumption)

• To simplify the notation, we will also assume that the bias term w0 is absorbed into
the weight vector, i.e. w = [w0,w1, ...,wD]⊺ and will let xn = [1, xn1, ..., xnD]⊺

• The likelihood is

p(D|w) =
N∏

n=1
p(y = yn |xn;w)

=
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

Likelihood for Binary Classification
• We denote our dataset asD = {(x1, y1), (x2, y2), ...(xN, yN)}, where y ∈ {0, 1}
• Wewill assume data is independent and identically distributed (i.e. iid assumption)

• To simplify the notation, we will also assume that the bias term w0 is absorbed into
the weight vector, i.e. w = [w0,w1, ...,wD]⊺ and will let xn = [1, xn1, ..., xnD]⊺

• The likelihood is

p(D|w) =
N∏

n=1
p(y = yn |xn;w)

=
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

Negative Log Likelihood
• The likelihood is

p(D|w) =
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

• Hence, the negative log likelihood, NLL(w) = − 1
N log p(D|w), is given by

NLL(w) = − 1
N

N∑
n=1

[yn log𝜎 (w⊺xn) + (1 − yn) log(1 − 𝜎 (w⊺xn))]

Negative Log Likelihood
• The likelihood is

p(D|w) =
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

• Hence, the negative log likelihood, NLL(w) = − 1
N log p(D|w), is given by

NLL(w) = − 1
N

N∑
n=1

[yn log𝜎 (w⊺xn) + (1 − yn) log(1 − 𝜎 (w⊺xn))]

Maximising the Likelihood
• To find the maximum likelihood parameter estimate, wemust solve

𝜕NLL(w)
𝜕wd

= 0

• It turns out that the likelihood has a unique optimum, i.e. it is convex

• Unfortunately, we cannot minimise the NLL(w) directly using a closed form
solution. Instead, we need to use a numerical optimisation method (i.e. gradient
descent)

• Tominimise it, we solve for the gradient

𝜕NLL(w)
𝜕wd

=
1
N

N∑
n=1

(𝜎 (w⊺xn) − yn)xnd

Maximising the Likelihood
• To find the maximum likelihood parameter estimate, wemust solve

𝜕NLL(w)
𝜕wd

= 0

• It turns out that the likelihood has a unique optimum, i.e. it is convex

• Unfortunately, we cannot minimise the NLL(w) directly using a closed form
solution. Instead, we need to use a numerical optimisation method (i.e. gradient
descent)

• Tominimise it, we solve for the gradient

𝜕NLL(w)
𝜕wd

=
1
N

N∑
n=1

(𝜎 (w⊺xn) − yn)xnd

Maximising the Likelihood
• To find the maximum likelihood parameter estimate, wemust solve

𝜕NLL(w)
𝜕wd

= 0

• It turns out that the likelihood has a unique optimum, i.e. it is convex

• Unfortunately, we cannot minimise the NLL(w) directly using a closed form
solution. Instead, we need to use a numerical optimisation method (i.e. gradient
descent)

• Tominimise it, we solve for the gradient

𝜕NLL(w)
𝜕wd

=
1
N

N∑
n=1

(𝜎 (w⊺xn) − yn)xnd

Visualising the NLL Loss Surface
• NLL loss surface for binary logistic regression applied to the Iris dataset with one

feature and one bias term

6 4 2 0 2 4 6
w1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

w
0

Loss function surface

0.6

2.4

4.2

6.0

7.8

9.6

11.4

NL
L

Figure adapted from Probabilistic Machine Learning: An Introduction, K. Murphy

Multiclass Classification

More Than Two Classes
• What if we have more than two classes,

i.e. y ∈ {1, . . . ,C}?

• Binary classification is not directly
applicable here. We need another
approach

x2

x1

More Than Two Classes
• What if we have more than two classes,

i.e. y ∈ {1, . . . ,C}?
• Binary classification is not directly

applicable here. We need another
approach

x2

x1

One-vs-Rest (OvR) Classification
• In OvR classification, the idea is to split the data into different “C” versus “not C”

problems
• We train a separate classifier, with an associated weight vector wc, for each class

x2

x1

y = 1

x2

x1

y = 2

x2

x1

y = 3

One-vs-Rest (OvR) Classification
• In OvR classification, the idea is to split the data into different “C” versus “not C”

problems
• We train a separate classifier, with an associated weight vector wc, for each class

x2

x1

y = 1

x2

x1

y = 2

x2

x1

y = 3

One-vs-Rest (OvR) Classification
• In OvR classification, the idea is to split the data into different “C” versus “not C”

problems
• We train a separate classifier, with an associated weight vector wc, for each class

x2

x1

y = 1

x2

x1

y = 2

x2

x1

y = 3

One-vs-Rest (OvR) Classification
• In OvR classification, the idea is to split the data into different “C” versus “not C”

problems
• We train a separate classifier, with an associated weight vector wc, for each class

x2

x1

y = 1

x2

x1

y = 2

x2

x1

y = 3

One-vs-Rest (OvR) Classification
• For each of the C classes we need to train a separate classifier,

p(y = c|x) = 𝜎 (w⊺c𝜙 (x))

• To assign a new data point x to one of the classes, we need to evaluate it using each
of the different per‑class classifiers

• We select the maximum of the different classifiers as the predicted class, i.e.

ŷ = argmax
c

𝜎 (w⊺c𝜙 (x))

• Note that the sum of the probabilities of the different classifiers is not constrained to
be 1

• The OvR approach is a general one that can be applied to any binary classifier

One-vs-Rest (OvR) Classification
• For each of the C classes we need to train a separate classifier,

p(y = c|x) = 𝜎 (w⊺c𝜙 (x))
• To assign a new data point x to one of the classes, we need to evaluate it using each

of the different per‑class classifiers

• We select the maximum of the different classifiers as the predicted class, i.e.

ŷ = argmax
c

𝜎 (w⊺c𝜙 (x))

• Note that the sum of the probabilities of the different classifiers is not constrained to
be 1

• The OvR approach is a general one that can be applied to any binary classifier

One-vs-Rest (OvR) Classification
• For each of the C classes we need to train a separate classifier,

p(y = c|x) = 𝜎 (w⊺c𝜙 (x))
• To assign a new data point x to one of the classes, we need to evaluate it using each

of the different per‑class classifiers

• We select the maximum of the different classifiers as the predicted class, i.e.

ŷ = argmax
c

𝜎 (w⊺c𝜙 (x))

• Note that the sum of the probabilities of the different classifiers is not constrained to
be 1

• The OvR approach is a general one that can be applied to any binary classifier

One-vs-Rest (OvR) Classification
• For each of the C classes we need to train a separate classifier,

p(y = c|x) = 𝜎 (w⊺c𝜙 (x))
• To assign a new data point x to one of the classes, we need to evaluate it using each

of the different per‑class classifiers

• We select the maximum of the different classifiers as the predicted class, i.e.

ŷ = argmax
c

𝜎 (w⊺c𝜙 (x))

• Note that the sum of the probabilities of the different classifiers is not constrained to
be 1

• The OvR approach is a general one that can be applied to any binary classifier

Multinomial (Softmax) Logistic Regression
• An alternative approach is to create a single model which has parameters for all

classes

• Multinomial logistic regression is an extension of binary logistic regression that can
handle multiple classes using the softmax function

p(y = c|x) = exp(w⊺c 𝜙 (x))∑C
k=1 exp(w

⊺
k 𝜙 (x))

• Note that 0 ≤ p(y = c|x) ≤ 1 and
∑C

k=1 p(y = k|x) = 1

Multinomial (Softmax) Logistic Regression
• An alternative approach is to create a single model which has parameters for all

classes

• Multinomial logistic regression is an extension of binary logistic regression that can
handle multiple classes using the softmax function

p(y = c|x) = exp(w⊺c 𝜙 (x))∑C
k=1 exp(w

⊺
k 𝜙 (x))

• Note that 0 ≤ p(y = c|x) ≤ 1 and
∑C

k=1 p(y = k|x) = 1

Multinomial (Softmax) Logistic Regression
• An alternative approach is to create a single model which has parameters for all

classes

• Multinomial logistic regression is an extension of binary logistic regression that can
handle multiple classes using the softmax function

p(y = c|x) = exp(w⊺c 𝜙 (x))∑C
k=1 exp(w

⊺
k 𝜙 (x))

• Note that 0 ≤ p(y = c|x) ≤ 1 and
∑C

k=1 p(y = k|x) = 1

Properties of the Softmax Function
• The softmax function s() converts a vector of K real numbers, z ∈ RK, into a

probability distribution of K possible outcomes

s(z)i =
exp(zi)∑K

k=1 exp(zk)

• It applies the standard exponential function to each element zi and normalises these
values by dividing by the sum of all these exponentials

• The normalisation ensures that the sum of the components of the output vector is 1,
i.e.

∑K
i=1 s(z)i = 1

Properties of the Softmax Function
• The softmax function s() converts a vector of K real numbers, z ∈ RK, into a

probability distribution of K possible outcomes

s(z)i =
exp(zi)∑K

k=1 exp(zk)

• It applies the standard exponential function to each element zi and normalises these
values by dividing by the sum of all these exponentials

• The normalisation ensures that the sum of the components of the output vector is 1,
i.e.

∑K
i=1 s(z)i = 1

Properties of the Softmax Function
• The softmax function s() converts a vector of K real numbers, z ∈ RK, into a

probability distribution of K possible outcomes

s(z)i =
exp(zi)∑K

k=1 exp(zk)

• It applies the standard exponential function to each element zi and normalises these
values by dividing by the sum of all these exponentials

• The normalisation ensures that the sum of the components of the output vector is 1,
i.e.

∑K
i=1 s(z)i = 1

Summary
• We discussed linear classification

• We presented a discriminative approach for linear classification called logistic
regression

• For a D dimensional input space, there are D + 1 parameters (i.e. weights) that need
to be learned in binary classification

• We showed that we can derive an expression for estimating the parameters for this
model using maximum likelihood estimation

• It is a simple model, but can be very effective. Often it should be one of the first
models to try

Summary
• We discussed linear classification

• We presented a discriminative approach for linear classification called logistic
regression

• For a D dimensional input space, there are D + 1 parameters (i.e. weights) that need
to be learned in binary classification

• We showed that we can derive an expression for estimating the parameters for this
model using maximum likelihood estimation

• It is a simple model, but can be very effective. Often it should be one of the first
models to try

Summary
• We discussed linear classification

• We presented a discriminative approach for linear classification called logistic
regression

• For a D dimensional input space, there are D + 1 parameters (i.e. weights) that need
to be learned in binary classification

• We showed that we can derive an expression for estimating the parameters for this
model using maximum likelihood estimation

• It is a simple model, but can be very effective. Often it should be one of the first
models to try

Summary
• We discussed linear classification

• We presented a discriminative approach for linear classification called logistic
regression

• For a D dimensional input space, there are D + 1 parameters (i.e. weights) that need
to be learned in binary classification

• We showed that we can derive an expression for estimating the parameters for this
model using maximum likelihood estimation

• It is a simple model, but can be very effective. Often it should be one of the first
models to try

Summary
• We discussed linear classification

• We presented a discriminative approach for linear classification called logistic
regression

• For a D dimensional input space, there are D + 1 parameters (i.e. weights) that need
to be learned in binary classification

• We showed that we can derive an expression for estimating the parameters for this
model using maximum likelihood estimation

• It is a simple model, but can be very effective. Often it should be one of the first
models to try

	Linear Classification
	Logistic Regression
	Learning Logistic Regression
	Multiclass Classification

