

 Applied Machine Learning (AML)
Logistic Regression

Oisin Mac Aodha • Siddharth N.

Linear Classification

Generative Versus Discriminative Classifiers
• Generative classifiers (e.g. Naive Bayes) model how a class ‘generated’ the feature

vector p(x|y)
• Which we then used for classification

p(y|x) ∝ p(x|y)p(y)

• In contrast, discriminative classifiers do not waste effort modelling the generative
process

• Instead, they model the posterior p(y|x) directly

1

Generative Versus Discriminative Classifiers
• Generative approaches model the class conditional densities p(x|y) and priors p(y)
• Discriminative approaches directly model the posterior p(y|x)

4 2 0 2 4 6

4

2

0

2

4

6

4 2 0 2 4 6

4

2

0

2

4

6

Generative Classifier Discriminative Classifier

2

The Linear Classification Problem
• In binary linear classificationwe are

given some input features x, with
associated class labels y

• The goal is to estimate the parameters w
of a hyperplane that can separate the
data into the two classes

• The decision boundary is the boundary
between these two regions, i.e. where
the two classes are ‘tied’

x2

x1

3

Linear Classifiers in Higher Dimensions
• In 2D, the decision boundary is represented as a line
• In 3D, the decision boundary is represented as a plane
• In higher dimensions, it is a hyperplane

x2

x1 x1

x2

x3

4

Linear ClassificationModel
• In binary linear classification we have a set of input features vector x ∈ RD and

binary class labels y ∈ {0, 1}

f(x;w) = wo + w1x1 + ... + wDxD

= wo +
D∑

d=1
wdxd

= w⊺𝜙 (x)
where w = [w0,w1, ...,wD]⊺ and 𝜙 (x) = [1, x1, ..., xD]⊺

• Tomake a prediction we can threshold the output of the function

ŷ =

{
1 if w⊺𝜙 (x) >= 0
0 if w⊺𝜙 (x) < 0

5

Geometric Perspective
• w⊺𝜙 (x) = 0 is the decision boundary

• Let w̃ be the weights without the bias w0,
then w̃ is normal to the decision boundary

• If w0 = 0, w⊺𝜙 (x) = 0 is a line passing
though the origin and orthogonal to w̃

• When w0 ≠ 0, it shifts the location of the
decision boundary

• If p is the point on the boundary closest to
the origin, then the normal distance from
the boundary to the origin is |w0 |

| |w̃ | |

x2

x1

w⊺𝜙 (x) = 0

w̃
|w0 |
| |w̃ | | p

6

Linear Separability
• If we can find a hyperplane to separate the data based on the class labels, the

problem is said to be linearly separable

x2

x1

Linearly separable

x2

x1

Linearly separable

x2

x1

Linearly non‑separable

7

Linear Separability
• If we can find a hyperplane to separate the data based on the classes, the problem is

linearly separable

• Causes of non perfect separation
◦ The linear model is too simple
◦ Simple features that do not account for all variations
◦ There is noise in the input features
◦ There are errors in the class labels

8

Logistic Regression

Logistic Regression
• One problemwith our linear classifier, f(x;w) = w⊺𝜙 (x), is that the outputs are

unbounded, i.e. f(x;w) ∈ [−∞,∞]
• Wewould like to model the posterior p(y = 1|x) directly
• To do so, our model predictions need to be in the range [0, 1]
• One solution is to ‘squash’ outputs of f(x;w) so that they remain in the range [0, 1]

9

The Logistic Function
• We need a function that returns probabilities, i.e. its outputs are between 0 and 1
• The logistic function provides this

𝜎 (z) = 1
1 + exp(−z)

• As z goes from −∞ to∞, 𝜎 (z) goes from 0 to 1,
• It has a ‘sigmoid’ shape, i.e. an ‘S’ like shape

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

z

f(
z)

10

Understanding the Logistic Function
• Here we provide some intuition for how the logistic function works

𝜎 (z) = 1
1 + exp(−z) =

exp(z)
exp(z) + 1

• As z becomes very negativewe get

𝜎 (z) = small
1 + small

∼ 0

• As z becomes very positivewe get

𝜎 (z) = large
1 + large

∼ 1

11

Shape of the Logistic Function
• Modifying the input to the logistic function changes the shape of the function, i.e. it

changes the output

𝜎 (z) = 1
1 + exp(−z)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x + 0

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = x − 2

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

𝜎
(z
)

z = 0.5x

12

Logistic Regression
• Logistic regression = linear weights + logistic squashing function

• Wemodel the class probabilities as

p(y = 1|x) = 𝜎 (w⊺𝜙 (x))

and thus
p(y = 0|x) = 1 − 𝜎 (w⊺𝜙 (x))

• 𝜎 (z) = 0.5 when z = 0, hence the decision boundary is given by w⊺𝜙 (x) = 0
• The decision boundary is a D − 1 hyperplane for a D dimensional input space

• Despite the name, this is a model for classification not regression

13

Decision Boundary for Logistic Regression
• The decision boundary for logistic

regression is where
p(y = 1|x;w) = p(y = 0|x) = 0.5

• The decision boundary occurs where
w⊺𝜙 (x) = 0

• Logistic regression has a linear decision
boundary

−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

x
𝜎
(z
)

p(y = 1|x)
p(y = 0|x)

w⊺𝜙 (x) = 0

14

Logistic Regression
• Let w̃ = [w1, ...,wD]⊺, be the weight vector without the bias term
• The direction of the vector w̃ affects the orientation of the hyperplane. The

hyperplane is perpendicular to w̃
• The bias parameter w0 shifts the position of the hyperplane, but does not alter the

orientation

• Themagnitude of the weight vector | |w| | effects how certain the classifications are

• For small | |w| |most of the probabilities within the region of the decision boundary
will be close to 0.5

• For large | |w| | probabilities in the same region will be close to 0 or 1

15

Impact ofWeights on Classification
• Here we visualise what happens to the predictions when we change the weights

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Input data

16

Impact ofWeights on Classification
• On the right we set the bias to w0 = 0

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [0.0, 1.4, 1.7]⊤

Zero bias

17

Impact ofWeights on Classification
• On the right we set the bias to w0 = −w0

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [2.3, 1.4, 1.7]⊤

Negative bias

18

Impact ofWeights on Classification
• On the right we negate all the weights w = −w

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [2.3,−1.4,−1.7]⊤

Negative weights

19

Impact ofWeights on Classification
• On the right we scale the weights by a constant w = cw

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−2.3, 1.4, 1.7]⊤

Standard model prediction

−3 −2 −1 0 1 2 3

x1

−3

−2

−1

0

1

2

3

x
2

w= [−23.2, 13.6, 17.5]⊤

Scaled weights

20

Learning Logistic Regression

Maximum Likelihood Estimation
• Wewant to estimate the parameters w of the logistic regression model using data

• Wewill do this viamaximum likelihood estimation
• Main steps:

◦ Write out the likelihood for the model
◦ Find the derivatives of the negative log likelihood w.r.t the parameters
◦ Adjust the parameters to minimise the negative log likelihood

21

Likelihood for Binary Classification
• We denote our dataset asD = {(x1, y1), (x2, y2), ...(xN, yN)}, where y ∈ {0, 1}
• Wewill assume data is independent and identically distributed (i.e. iid assumption)

• To simplify the notation, we will also assume that the bias term w0 is absorbed into
the weight vector, i.e. w = [w0,w1, ...,wD]⊺ and will let xn = [1, xn1, ..., xnD]⊺

• The likelihood is

p(D|w) =
N∏

n=1
p(y = yn |xn;w)

=
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

22

Negative Log Likelihood
• The likelihood is

p(D|w) =
N∏

n=1
p(y = 1|xn;w)yn (1 − p(y = 1|xn;w))1−yn

• Hence, the negative log likelihood, NLL(w) = − 1
N log p(D|w), is given by

NLL(w) = − 1
N

N∑
n=1

[yn log𝜎 (w⊺xn) + (1 − yn) log(1 − 𝜎 (w⊺xn))]

23

Maximising the Likelihood
• To find the maximum likelihood parameter estimate, wemust solve

𝜕NLL(w)
𝜕wd

= 0

• It turns out that the likelihood has a unique optimum, i.e. it is convex
• Unfortunately, we cannot minimise the NLL(w) directly using a closed form

solution. Instead, we need to use a numerical optimisation method (i.e. gradient
descent)

• Tominimise it, we solve for the gradient

𝜕NLL(w)
𝜕wd

=
1
N

N∑
n=1

(𝜎 (w⊺xn) − yn)xnd

24

Visualising the NLL Loss Surface
• NLL loss surface for binary logistic regression applied to the Iris dataset with one

feature and one bias term

6 4 2 0 2 4 6
w1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
w

0

Loss function surface

0.6

2.4

4.2

6.0

7.8

9.6

11.4

NL
L

Figure adapted from Probabilistic Machine Learning: An Introduction, K. Murphy

25

Multiclass Classification

More Than Two Classes
• What if we have more than two classes,

i.e. y ∈ {1, . . . ,C}?
• Binary classification is not directly

applicable here. We need another
approach

x2

x1

26

One-vs-Rest (OvR) Classification
• In OvR classification, the idea is to split the data into different “C” versus “not C”

problems
• We train a separate classifier, with an associated weight vector wc, for each class

x2

x1

y = 1

x2

x1

y = 2

x2

x1

y = 3

27

One-vs-Rest (OvR) Classification
• For each of the C classes we need to train a separate classifier,

p(y = c|x) = 𝜎 (w⊺c𝜙 (x))
• To assign a new data point x to one of the classes, we need to evaluate it using each

of the different per‑class classifiers

• We select the maximum of the different classifiers as the predicted class, i.e.

ŷ = argmax
c

𝜎 (w⊺c𝜙 (x))

• Note that the sum of the probabilities of the different classifiers is not constrained to
be 1

• The OvR approach is a general one that can be applied to any binary classifier

28

Multinomial (Softmax) Logistic Regression
• An alternative approach is to create a single model which has parameters for all

classes

• Multinomial logistic regression is an extension of binary logistic regression that can
handle multiple classes using the softmax function

p(y = c|x) = exp(w⊺c 𝜙 (x))∑C
k=1 exp(w

⊺
k 𝜙 (x))

• Note that 0 ≤ p(y = c|x) ≤ 1 and
∑C

k=1 p(y = k|x) = 1

29

Properties of the Softmax Function
• The softmax function s() converts a vector of K real numbers, z ∈ RK, into a

probability distribution of K possible outcomes

s(z)i =
exp(zi)∑K

k=1 exp(zk)

• It applies the standard exponential function to each element zi and normalises these
values by dividing by the sum of all these exponentials

• The normalisation ensures that the sum of the components of the output vector is 1,
i.e.

∑K
i=1 s(z)i = 1

30

Summary
• We discussed linear classification

• We presented a discriminative approach for linear classification called logistic
regression

• For a D dimensional input space, there are D + 1 parameters (i.e. weights) that need
to be learned in binary classification

• We showed that we can derive an expression for estimating the parameters for this
model using maximum likelihood estimation

• It is a simple model, but can be very effective. Often it should be one of the first
models to try

31

	Linear Classification
	Logistic Regression
	Learning Logistic Regression
	Multiclass Classification

