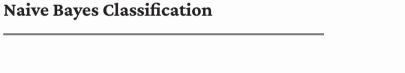


Applied Machine Learning (AML)

Naive Bayes

Oisin Mac Aodha • Siddharth N.



Generative Classification

- In classification the goal is to a learn a function $\hat{y} = f(x; \theta)$
 - $\circ \ \ y \in \{1,....,\,C\} \text{ is one of } C \text{ classes (e.g. spam / ham, digits 0-9)}$
 - $\circ x = [x_1, ..., x_D]^{\top}$ are the features (e.g. continuous or discrete)

Generative Classification

- In classification the goal is to a learn a function $\hat{y} = f(x; \theta)$
 - $\circ y \in \{1, ..., C\}$ is one of C classes (e.g. spam / ham, digits 0-9)
 - $\circ x = [x_1, ..., x_D]^{\top}$ are the features (e.g. continuous or discrete)
- In probabilistic classification we choose the most probable class given an observation

$$\hat{y} = \underset{c}{\operatorname{arg max}} \ p(y = c | \boldsymbol{x})$$

Generative Classification

- In classification the goal is to a learn a function ŷ = f(x; θ)
 y ∈ {1, ..., C} is one of C classes (e.g. spam / ham, digits 0-9)
 x = [x₁, ..., x_D][⊤] are the features (e.g. continuous or discrete)
- In probabilistic classification we choose the most probable class given an observation

$$\hat{y} = \underset{c}{\operatorname{arg max}} \ p(y = c | \boldsymbol{x})$$

 We can use Bayes's rule to convert the class prior and class-conditionals to a posterior probability for a class

$$p(y = c | \mathbf{x}) = \frac{p(\mathbf{x} | y = c)p(y = c)}{\sum_{c'} p(\mathbf{x} | y = c')p(y = c')}$$
 posterior =
$$\frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$

$$p(y = c|\mathbf{x}) = \frac{p(\mathbf{x}|y = c)p(y = c)}{p(\mathbf{x})}$$

$$p(y = c|\mathbf{x}) = \frac{p(\mathbf{x}|y = c)p(y = c)}{p(\mathbf{x})}$$

- $p(\mathbf{x}|y=c)$: Likelihood
 - o Class conditional density for each class
 - \circ Describes how likely we are to see observation x for a given class

$$p(y = c|\mathbf{x}) = \frac{p(\mathbf{x}|y = c)p(y = c)}{p(\mathbf{x})}$$

- $p(\mathbf{x}|y=c)$: Likelihood
 - Class conditional density for each class
 - \circ Describes how likely we are to see observation x for a given class
- p(y=c): Prior probability
 - The prior for each class
 - o Encodes which classes are common and which are rare

$$p(y = c|\mathbf{x}) = \frac{p(\mathbf{x}|y = c)p(y = c)}{p(\mathbf{x})}$$

- $p(\mathbf{x}|y=c)$: Likelihood
 - Class conditional density for each class
 - \circ Describes how likely we are to see observation x for a given class
- p(y=c): Prior probability
 - The prior for each class
 - o Encodes which classes are common and which are rare
- p(x): Evidence
 - $p(\mathbf{x}) = \sum_{c'} p(\mathbf{x}|y=c') p(y=c')$
 - Normalises the probabilities across observations
 - o Does not impact which class is the most likely

Representing the Class Conditional Density

- ullet Representing the prior p(y) for each class is straight forward, i.e. we can compute frequency of each class
- We need to choose a probabilistic model for our conditional density p(x|y)

Representing the Class Conditional Density

- ullet Representing the prior p(y) for each class is straight forward, i.e. we can compute frequency of each class
- We need to choose a probabilistic model for our conditional density p(x|y)
- For example, for multivariate continuous data i.e. $x \in \mathbb{R}^D$, we can use the multivariate Gaussian with parameters μ_c and Σ_c

Representing the Class Conditional Density

- ullet Representing the prior p(y) for each class is straight forward, i.e. we can compute frequency of each class
- We need to choose a probabilistic model for our conditional density p(x|y)
- For example, for multivariate continuous data i.e. $x \in \mathbb{R}^D$, we can use the multivariate Gaussian with parameters μ_c and Σ_c
- However, this requires estimating D(D+1)/2 parameters for each class covariance matrix Σ_c , which may be problematic as the dimensionality D gets large

Naive Bayes Assumption

 Naive Bayes makes the simplifying assumption that the features are conditionally independent given the class label

Naive Bayes Assumption

 Naive Bayes makes the simplifying assumption that the features are conditionally independent given the class label

$$p(\mathbf{x}|y) = \prod_{d=1}^{D} p(x_d|y)$$

Naive Bayes Assumption

 Naive Bayes makes the simplifying assumption that the features are conditionally independent given the class label

$$p(\mathbf{x}|y) = \prod_{d=1}^{D} p(x_d|y)$$

- The model is called "naive" since we do not expect the features to be independent, even conditional on the class labels
- Even though this assumption is not typically true, Naive Bayes can still work well in practice

• Independence means that one variable does not affect another, A is (marginally) independent of B if

$$p(A|B) = P(A)$$

• Independence means that one variable does not affect another, A is (marginally) independent of B if

$$p(A|B) = P(A)$$

• Which, from the definition of the conditional probability, is equivalent to saying

$$p(A, B) = P(A)P(B)$$

Independence means that one variable does not affect another, A is (marginally) independent of B if

$$p(A|B) = P(A)$$

• Which, from the definition of the conditional probability, is equivalent to saying

$$p(A, B) = P(A)P(B)$$

ullet A is conditionally independent of C given B if

$$p(A|C,B) = p(A|B)$$

• Independence means that one variable does not affect another, A is (marginally) independent of B if

$$p(A|B) = P(A)$$

• Which, from the definition of the conditional probability, is equivalent to saying

$$p(A, B) = P(A)P(B)$$

• A is conditionally independent of C given B if

$$p(A|C,B) = p(A|B)$$

i.e. once we know B, knowing C does not provide additional information about A

• The probabilities of going to the beach and having a heat stroke are not independent, i.e.

• The probabilities of going to the beach and having a heat stroke are not independent, i.e.

• However, they may be independent if we know the weather is hot

$$p(B, S|H) = p(B|H)p(S|H)$$

• The probabilities of going to the beach and having a heat stroke are not independent, i.e.

• However, they may be independent if we know the weather is hot

$$p(B, S|H) = p(B|H)p(S|H)$$

• Hot weather "explains" all the dependence between the beach and heatstroke

• The probabilities of going to the beach and having a heat stroke are not independent, i.e.

• However, they may be independent if we know the weather is hot

$$p(B, S|H) = p(B|H)p(S|H)$$

- Hot weather "explains" all the dependence between the beach and heatstroke
- In classification, the class label explains all the dependence between the features

$$p(\boldsymbol{x}|y) = p(x_1, x_2, x_3|y)$$

$$p(\mathbf{x}|y) = p(x_1, x_2, x_3|y)$$

= $p(x_3|x_2, x_1, y)p(x_2, x_1|y)$

$$p(\mathbf{x}|y) = p(x_1, x_2, x_3|y)$$

$$= p(x_3|x_2, x_1, y)p(x_2, x_1|y)$$

$$= p(x_3|x_2, x_1, y)p(x_2|x_1, y)p(x_1|y)$$

$$p(\mathbf{x}|y) = p(x_1, x_2, x_3|y)$$

$$= p(x_3|x_2, x_1, y)p(x_2, x_1|y)$$

$$= p(x_3|x_2, x_1, y)p(x_2|x_1, y)p(x_1|y)$$

$$= \prod_{d=1}^{D} p(x_d|x_{d-1}, ..., x_1, y)$$

• Suppose we had a feature vector $\mathbf{x} = [x_1, x_2, x_3]^{\mathsf{T}}$, we can write out the conditional probability as

$$p(\mathbf{x}|y) = p(x_1, x_2, x_3|y)$$

$$= p(x_3|x_2, x_1, y)p(x_2, x_1|y)$$

$$= p(x_3|x_2, x_1, y)p(x_2|x_1, y)p(x_1|y)$$

$$= \prod_{d=1}^{D} p(x_d|x_{d-1}, ..., x_1, y)$$

• In Naive Bayes we make the following simplifying assumption

$$p(\boldsymbol{x}|y) = \prod_{d=1}^{D} p(x_d|y)$$

Naive Bayes with Binary Data

Spam Email Classification Example

• The task is to separate spam from ham (i.e. 'not spam') emails

Spam Email Classification Example

- The task is to separate spam from ham (i.e. 'not spam') emails
- We have access to the following dataset containing six emails

id	email	status
1	"send us your password"	spam
2	"send us review"	ham
3	"review your account"	ham
4	"review us"	spam
5	"send your password"	spam
6	"send us your account"	spam

Spam Email Classification Example

- The task is to separate spam from ham (i.e. 'not spam') emails
- We have access to the following dataset containing six emails

id	email	status
1	"send us your password"	spam
2	"send us review"	ham
3	"review your account"	ham
4	"review us"	spam
5	"send your password"	spam
6	"send us your account"	spam

• We can fit a Naive Bayes classifier to this data so that we can classify new emails

ullet We need to turn each email into a vector $oldsymbol{x}$

- We need to turn each email into a vector x
- We can simply use a binary feature $x_d \in \{0,1\}$ to indicate if a specific word is present or not

- We need to turn each email into a vector x
- We can simply use a binary feature $x_d \in \{0,1\}$ to indicate if a specific word is present or not
- For example, for a vocabulary with the following words:

```
{ 'password', 'review', 'send', 'us', 'your', 'account' }
```

The email containing the text "send us your password" would be encoded as x = [1, 0, 1, 1, 1, 0]

- We need to turn each email into a vector x
- We can simply use a binary feature $x_d \in \{0,1\}$ to indicate if a specific word is present or not
- For example, for a vocabulary with the following words:

{ 'password', 'review', 'send', 'us', 'your', 'account' }

The email containing the text "send us your password" would be encoded as x = [1, 0, 1, 1, 1, 0]

• We can exclude common words, e.g. 'a', 'the', ...

Representing Text Data

 Given the following vocabulary we can extract features from our data: { 'password', 'review', 'send', 'us', 'your', 'account' }

id	email	feature	status
1	"send us your password"	[1, 0, 1, 1, 1, 0]	spam
2	"send us review"	[0, 1, 1, 1, 0, 0]	ham
3	"review your account"	[0, 1, 0, 0, 1, 1]	ham
4	"review us"	[0, 1, 0, 1, 0, 0]	spam
5	"send your password"	[1, 0, 1, 0, 1, 0]	spam
6	"send us your account"	[0, 0, 1, 1, 1, 1]	spam

• As the features are **binary**, i.e. $x_d \in \{0, 1\}$, we can use the Bernoulli distribution to represent the class condition density

• As the features are **binary**, i.e. $x_d \in \{0, 1\}$, we can use the Bernoulli distribution to represent the class condition density

$$p(\boldsymbol{x}|y=c;\boldsymbol{\theta}) = \prod_{d=1}^{D} \mathsf{Ber}(x_d|\phi_{dc})$$

• As the features are **binary**, i.e. $x_d \in \{0, 1\}$, we can use the Bernoulli distribution to represent the class condition density

$$p(\boldsymbol{x}|y=c;\boldsymbol{\theta}) = \prod_{d=1}^{D} \text{Ber}(x_d|\phi_{dc})$$

• Here, $\phi_{dc} \in [0, 1]$ is the probability that $x_d = 1$ when y is class c

$$Ber(x_d|\theta_{dc}) = \theta_{dc}^{x_d} (1 - \theta_{dc})^{(1-x_d)}$$

• As the features are **binary**, i.e. $x_d \in \{0, 1\}$, we can use the Bernoulli distribution to represent the class condition density

$$p(\boldsymbol{x}|y=c;\boldsymbol{\theta}) = \prod_{d=1}^{D} \text{Ber}(x_d|\phi_{dc})$$

• Here, $\phi_{dc} \in [0, 1]$ is the probability that $x_d = 1$ when y is class c

$$Ber(x_d|\theta_{dc}) = \theta_{dc}^{x_d}(1 - \theta_{dc})^{(1-x_d)}$$

• In the case of binary features, the maximum likelihood estimate is

$$\hat{\phi}_{\mathsf{MLE}} = \frac{N_{dc}}{N_{c}}$$

i.e. the empirical fraction of times that feature d is present in examples from class c

id	email	status
1	"send us your password"	S
2	"send us review"	h
3	"review your account"	h
4	"review us"	S
5	"send your password"	S
6	"send us your account"	S

id	email	status
1	"send us your password"	S
2	"send us review"	h
3	"review your account"	h
4	"review us"	S
5	"send your password"	S
6	"send us your account"	S

$$p(spam) = 4/6$$
 $p(ham) = 2/6$

id	email	status
1	"send us your password"	S
2	"send us review"	h
3	"review your account"	h
4	"review us"	S
5	"send your password"	S
6	"send us your account"	S

• Class priors:

$$p(spam) = 4/6$$
 $p(ham) = 2/6$

• Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d
2/4	0/2	password

id	email	status
1	"send us your password"	S
2	"send us review"	h
3	"review your account"	h
4	"review us"	S
5	"send your password"	S
6	"send us your account"	S

Class priors:

$$p(spam) = 4/6$$
 $p(ham) = 2/6$

• Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d
2/4	0/2	password
1/4	2/2	review

id	email	status
1	"send us your password"	S
2	"send us review"	h
3	"review your account"	h
4	"review us"	S
5	"send your password"	S
6	"send us your account"	S

Class priors:

$$p(spam) = 4/6$$
 $p(ham) = 2/6$

• Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d
2/4	0/2	password
1/4	2/2	review
3/4	1/2	send
3/4	1/2	us
3/4	1/2	your
1/4	1/2	account

 Given an new email we would like to be able to classify it

- Class priors: p(spam) = 4/6 p(ham) = 2/6
- Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d	
2/4	0/2	password	
1/4	2/2	review	
3/4	1/2	send	
3/4	1/2	us	
3/4	1/2	your	
1/4	1/2	account	

- Given an new email we would like to be able to classify it
- For example, given the test email:

"review us now"

- Class priors: p(spam) = 4/6 p(ham) = 2/6
- Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d		
2/4	0/2	password		
1/4	2/2	review		
3/4	1/2	send		
3/4	1/2	us		
3/4	1/2	your		
1/4	1/2	account		

- Given an new email we would like to be able to classify it
- For example, given the test email:
 "review us now"
- $x_t = [0, 1, 0, 1, 0, 0]^{\mathsf{T}}$

- Class priors: p(spam) = 4/6 p(ham) = 2/6
- Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d
2/4	0/2	password
1/4	2/2	review
3/4	1/2	send
3/4	1/2	us
3/4	1/2	your
1/4	1/2	account

- Given an new email we would like to be able to classify it
- For example, given the test email:
 "review us now"
- $x_t = [0, 1, 0, 1, 0, 0]^{\mathsf{T}}$

- Class priors: p(spam) = 4/6 p(ham) = 2/6
- Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d		
2/4	0/2	password		
1/4	2/2	review		
3/4	1/2	send		
3/4	1/2	us		
3/4	1/2	your		
1/4	1/2	account		

$$p(x_t|spam) = p(0, 1, 0, 1, 0, 0|spam)$$

- Given an new email we would like to be able to classify it
- For example, given the test email:
 - "review us now"
- $x_t = [0, 1, 0, 1, 0, 0]^{\mathsf{T}}$

- Class priors: p(spam) = 4/6 p(ham) = 2/6
 - Dar class likelihoods

Per-class likelinoods:				
$p(x_d \text{spam})$	$p(x_d ham)$	x_d		
2/4	0/2	password		
1/4	2/2	review		
3/4	1/2	send		
3/4	1/2	us		
3/4	1/2	your		
1/4	1/2	account		

$$p(\mathbf{x}_t|\text{spam}) = p(0, 1, 0, 1, 0, 0|\text{spam})$$

= $(1 - \frac{2}{4})(\frac{1}{4})(1 - \frac{3}{4})(\frac{3}{4})(1 - \frac{3}{4})(1 - \frac{1}{4}) = 0.004$

- Given an new email we would like to be able to classify it
- For example, given the test email:
 "review us now"
- $x_t = [0, 1, 0, 1, 0, 0]^{\mathsf{T}}$

• Class priors: p(spam) = 4/6 p(ham) = 2/6

Per-class likelihoods:

$p(x_d spam)$	$p(x_d ham)$	x_d		
2/4	0/2	password		
1/4	2/2	review		
3/4	1/2	send		
3/4	1/2	us		
3/4	1/2	your		
1/4	1/2	account		

$$p(x_t|\text{ham}) = p(0, 1, 0, 1, 0, 0|\text{ham})$$

- Given an new email we would like to be able to classify it
- For example, given the test email:
 - "review us now"
- $x_t = [0, 1, 0, 1, 0, 0]^{\mathsf{T}}$

- Class priors: p(spam) = 4/6 p(ham) = 2/6
- Per-class likelihoods: $p(x_d|spam)$ $p(x_d|\text{ham})$ x_d 2/4 0/2 password 1/4 2/2 review 3/4 1/2 send 3/4 1/2

1/2

1/2

US

vour

account

$$p(\mathbf{x}_t|\mathsf{ham}) = p(0, 1, 0, 1, 0, 0|\mathsf{ham})$$

$$= (1 - \frac{0}{2})(\frac{2}{2})(1 - \frac{1}{2})(\frac{1}{2})(1 - \frac{1}{2})(1 - \frac{1}{2}) = 0.0625$$

3/4

1/4

$$p(\mathsf{ham}|\boldsymbol{x}_t) = \frac{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham})}{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham}) + p(\boldsymbol{x}_t|\mathsf{spam})p(\mathsf{spam})}$$

$$p(\mathsf{ham}|\boldsymbol{x}_t) = \frac{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham})}{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham}) + p(\boldsymbol{x}_t|\mathsf{spam})p(\mathsf{spam})}$$
$$= \frac{0.0625 \times 2/6}{0.004 \times 4/6 + 0.0625 \times 2/6}$$

$$p(\mathsf{ham}|\boldsymbol{x}_t) = \frac{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham})}{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham}) + p(\boldsymbol{x}_t|\mathsf{spam})p(\mathsf{spam})}$$
$$= \frac{0.0625 \times 2/6}{0.004 \times 4/6 + 0.0625 \times 2/6}$$
$$= 0.88$$

• From our Bayes classifier, we can obtain our **posterior** probability as

$$p(\mathsf{ham}|\boldsymbol{x}_t) = \frac{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham})}{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham}) + p(\boldsymbol{x}_t|\mathsf{spam})p(\mathsf{spam})}$$
$$= \frac{0.0625 \times 2/6}{0.004 \times 4/6 + 0.0625 \times 2/6}$$
$$= 0.88$$

• Thus, according to our model, the probability that "review us now" is a ham email is $p(\text{ham}|\boldsymbol{x}_t) = 0.88$

• From our Bayes classifier, we can obtain our **posterior** probability as

$$p(\mathsf{ham}|\boldsymbol{x}_t) = \frac{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham})}{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham}) + p(\boldsymbol{x}_t|\mathsf{spam})p(\mathsf{spam})}$$
$$= \frac{0.0625 \times 2/6}{0.004 \times 4/6 + 0.0625 \times 2/6}$$
$$= 0.88$$

• Thus, according to our model, the probability that "review us now" is a ham email is $p(\mathsf{ham}|\boldsymbol{x}_t) = 0.88$ and by extension, $p(\mathsf{spam}|\boldsymbol{x}_t) = 1 - 0.88$

- Zero-frequency problem
 - \circ e.g. any email containing the word "password" is spam $p(\mathsf{password}|\mathsf{ham}) = 0/2$

- Zero-frequency problem
 - \circ e.g. any email containing the word "password" is spam $p(\mathsf{password}|\mathsf{ham}) = 0/2$
 - Solution: never allow zero probabilities
 - o Laplace smoothing: add a small positive number to all counts

$$p(x_d|y) = \frac{N_{dc} + \epsilon}{N_c + 2\epsilon}$$

- Zero-frequency problem
 - \circ e.g. any email containing the word "password" is spam $p(\mathsf{password}|\mathsf{ham}) = 0/2$
 - Solution: never allow zero probabilities
 - o Laplace smoothing: add a small positive number to all counts

$$p(x_d|y) = \frac{N_{dc} + \epsilon}{N_c + 2\epsilon}$$

Independence assumption

- Zero-frequency problem
 - o e.g. any email containing the word "password" is spam p(password|ham) = 0/2
 - Solution: never allow zero probabilities
 - o Laplace smoothing: add a small positive number to all counts

$$p(x_d|y) = \frac{N_{dc} + \epsilon}{N_c + 2\epsilon}$$

- Independence assumption
 - Every feature contributes independently
 - o e.g. you can fool Naive Bayes by adding lots of 'hammy' words

• Suppose we do not have the value for some feature x_i ?

- Suppose we do not have the value for some feature x_j ?
 - o e.g. some medical test was not performed on the patient
 - How can we compute $p(x_1 = 1, ..., x_j =?, ...x_d|y)$?

- Suppose we do not have the value for some feature x_j ?
 - o e.g. some medical test was not performed on the patient
 - How can we compute $p(x_1 = 1, ..., x_j =?, ...x_d|y)$?
- This is easy with Naive Bayes
 - We simply ignore the feature in any instance where the value is *missing*
 - We compute the likelihood based on observed features only

$$p(\mathbf{x}|y) = \prod_{\substack{d=1\\d \neq j}}^{D} p(x_d|y)$$

- Suppose we do not have the value for some feature x_j ?
 - o e.g. some medical test was not performed on the patient
 - How can we compute $p(x_1 = 1, ..., x_i =?, ...x_d|y)$?
- This is easy with Naive Bayes
 - We simply ignore the feature in any instance where the value is *missing*
 - We compute the likelihood based on observed features only

$$p(\boldsymbol{x}|y) = \prod_{\substack{d=1\\d \neq i}}^{D} p(x_d|y)$$

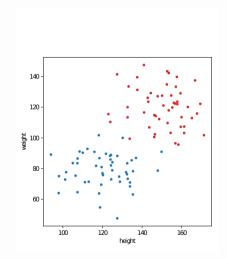
No need to 'estimate' or explicitly model missing features

Continuous Feature Example - Task

• Task: Distinguish alpacas from llamas based on size

Continuous Feature Example - Data

- Task: Distinguish alpacas from llamas
 - \circ Classes: $y \in \{a, l\}$
 - Features: height (cm) and weight (kg)
 - Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
 - $\circ \ \ \text{Assume height and weight are independent}$



• In the case of real-valued features, $x_d \in \mathbb{R}$, we can use the univariate Gaussian distribution

$$p(\boldsymbol{x}|y=c;\boldsymbol{\theta}) = \prod_{l=1}^{D} \mathcal{N}(x_d|\mu_{dc}, \sigma_{dc}^2)$$

• In the case of real-valued features, $x_d \in \mathbb{R}$, we can use the univariate Gaussian distribution

$$p(\boldsymbol{x}|y=c;\boldsymbol{\theta}) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_{dc}, \sigma_{dc}^2)$$

• Here μ_{dc} is the **mean** of feature d when the class label is c and σ_{dc}^2 is its **variance**

• In the case of real-valued features, $x_d \in \mathbb{R}$, we can use the univariate Gaussian distribution

$$p(\boldsymbol{x}|y=c;\boldsymbol{\theta}) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_{dc}, \sigma_{dc}^2)$$

- Here μ_{dc} is the **mean** of feature d when the class label is c and σ_{dc}^2 is its **variance**
- This is equivalent to Gaussian discriminant analysis using diagonal covariance matrices

- Task: Distinguish alpacas from llamas
 - \circ Classes: $y \in \{a, l\}$
 - Features: height (cm) and weight (kg)
 - Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
 - o Assume height and weight are independent

- Task: Distinguish alpacas from llamas
 - \circ Classes: $y \in \{a, l\}$
 - Features: height (cm) and weight (kg)
 - Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
 - o Assume height and weight are independent
- Class priors: $p(a) = N_a/N$ and $p(l) = N_l/N$

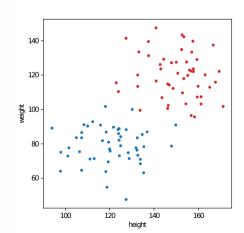
- Task: Distinguish alpacas from llamas
 - \circ Classes: $y \in \{a, l\}$
 - Features: height (cm) and weight (kg)
 - Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
 - o Assume height and weight are independent
- Class priors: $p(a) = N_a/N$ and $p(l) = N_l/N$
- Class conditionals for alpacas:
 - Height ~ $\mathcal{N}(x_h|\mu_{ha}, \sigma_{ha}^2)$
 - \circ Weight $\sim \mathcal{N}(x_w|\mu_{wa}, \sigma_{wa}^2)$

- Task: Distinguish alpacas from llamas
 - \circ Classes: $y \in \{a, l\}$
 - Features: height (cm) and weight (kg)
 - Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
 - o Assume height and weight are independent
- Class priors: $p(a) = N_a/N$ and $p(l) = N_l/N$
- Class conditionals for alpacas:
 - Height ~ $\mathcal{N}(x_h|\mu_{ha}, \sigma_{ha}^2)$
 - Weight ~ $\mathcal{N}(x_w|\mu_{wa}, \sigma_{wa}^2)$
- Class conditionals for llamas:
 - Height ~ $\mathcal{N}(x_h|\mu_{hl}, \sigma_{hl}^2)$
 - Weight ~ $\mathcal{N}(x_w | \mu_{wl}, \sigma_{wl}^2)$

Continuous Feature Example

$$p(a) = N_a/N, p(1) = N_l/N$$

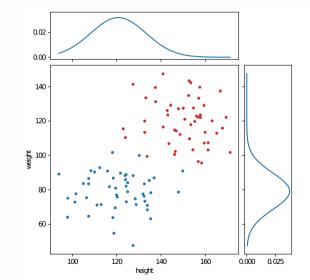
- Class conditionals for alpacas:
 - Height ~ $\mathcal{N}(x_h|\mu_{ha}, \sigma_{ha}^2)$
 - Weight $\sim \mathcal{N}(x_w|\mu_{wa}, \sigma_{wa}^2)$
- Class conditionals for llamas:
 - Height ~ $\mathcal{N}(x_h|\mu_{hl},\sigma_{hl}^2)$
 - Weight ~ $\mathcal{N}(x_w|\mu_{wl}, \sigma_{wl}^2)$



Continuous Feature Example

$$p(a) = N_a/N, p(l) = N_l/N$$

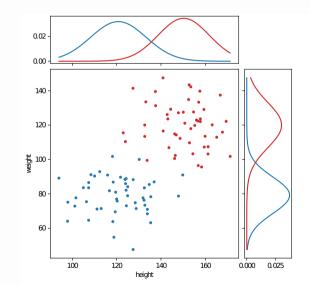
- Class conditionals for alpacas:
 - \circ Height $\sim \mathcal{N}(x_h|\mu_{ha}, \sigma_{ha}^2)$
 - Weight ~ $\mathcal{N}(x_w|\mu_{wa}, \sigma_{wa}^2)$
- Class conditionals for llamas:
 - Height ~ $\mathcal{N}(x_h|\mu_{hl},\sigma_{hl}^2)$
 - Weight ~ $\mathcal{N}(x_w|\mu_{wl}, \sigma_{wl}^2)$



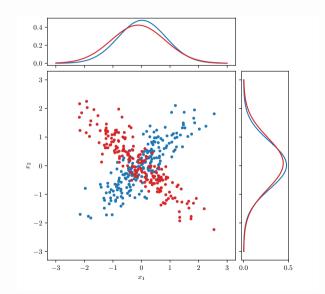
Continuous Feature Example

$$p(\mathbf{a}) = N_a/N, p(\mathbf{l}) = N_l/N$$

- Class conditionals for alpacas:
 - \circ Height $\sim \mathcal{N}(x_h|\mu_{ha}, \sigma_{ha}^2)$
 - Weight ~ $\mathcal{N}(x_w|\mu_{wa}, \sigma_{wa}^2)$
- Class conditionals for llamas:
 - Height ~ $\mathcal{N}(x_h|\mu_{hl}, \sigma_{hl}^2)$
 - Weight ~ $\mathcal{N}(x_w | \mu_{wl}, \sigma_{wl}^2)$



 The conditional independence assumption used by Naive Bayes can fail to capture relationships that may be present in some datasets



Summary

- We presented the Naive Bayes classifier
- It assumes that features are conditionally independent given the class
- This results in a reduction in the number of parameters we need to learn

Summary

- We presented the **Naive Bayes** classifier
- It assumes that features are conditionally independent given the class
- This results in a reduction in the number of parameters we need to learn
- We can apply it to both *discrete* and *continuous* data
- This underlying assumption of Naive Bayes is a simplification that will not necessarily work for all datasets

