Applied Machine Learning (AML)

Naive Bayes

Oisin Mac Aodha • Siddharth N.

Naive Bayes Class

Generative Classification

- In classification the goal is to a learn a function $\hat{y} = f(x; \theta)$ ◦ *y* ∈ {1*,, C*} is one of *C* classes (e.g. spam / ham, digits 0‑9) ◦ *x* = [*x*1*, ..., xD*] [⊤] are the features (e.g. continuous or discrete)
- In probabilistic classification we choose the most probable class given an observation

$$
\hat{y} = \arg\max_{c} p(y = c|\mathbf{x})
$$

• We can use **Bayes's rule** to convert the class prior and class‑conditionals to a posterior probability for a class

$$
p(y = c | \mathbf{x}) = \frac{p(\mathbf{x} | y = c) p(y = c)}{\sum_{c'} p(\mathbf{x} | y = c') p(y = c')} \qquad \text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}
$$

Generative Classification

- $p(y = c|\mathbf{x})$
- $p(x|y=c)$: **Likelihood**
	- Class conditional density for each class
	- Describes how likely we are to see ob
- $p(y = c)$: **Prior probability**
	- The prior for each class
	- Encodes which classes are common a
- *p*(*x*): **Evidence**
	- $p(x) = \sum_{c'} p(x|y = c')p(y = c')$
	- Normalises the probabilities across observations
	- Does not impact which class is the m

1

2 informatics

Representing the Class Conditional Density

- Representing the prior $p(y)$ for each class is straight forward, i.e. we can compute frequency of each class
- We need to choose a probabilistic model for our conditional density $p(x|y)$
- For example, for multivariate continuous data i.e. *x* ∈ R *^D*, we can use the multivariate Gaussian with parameters μ_c and Σ_c
- \bullet However, this requires estimating $D(D+1)/2$ parameters for each class covariance matrix Σ_c , which may be problematic as the dimensionality *D* gets large

Naive Bayes Assumption

• Naive Bayes makes the *simplifying* assumption that the **features are conditionally independent given the class label**

$$
p(\mathbf{x}|y) = \prod_{d=1}^{D} p(x_d|y)
$$

- The model is called "*naive*" since we do not expect the features to be independent, even conditional on the class labels
- Even though this assumption is not typically true, Naive Bayes can still work well in practice

 $\mathbf{\Omega}$ informatics

Independence

 $\n **②**\n **informatics**$

• **Independence** means that one variable does not affect another, *A* is (*marginally*) independent of *B* if

$$
p(A|B) = P(A)
$$

 \bullet Which, from the definition of the conditional probability, is equivalent to saying

$$
p(A, B) = P(A)P(B)
$$

• *A* is **conditionally independent** of *C* given *B* if

$$
p(A|C, B) = p(A|B)
$$

i.e. once we know *B*, knowing *C* does not provide additional information about *A*

EX informatics

Conditional Independence - Example

• The probabilities of going to the beach and having a heat stroke are not independent, i.e.

 $p(B, S) > p(B)p(S)$

• However, they may be independent if we know the weather is hot

 $p(B, S|H) = p(B|H)p(S|H)$

- Hot weather "explains" all the dependence between the beach and heatstroke
- In classification, the class label explains all the dependence between the features

6

4

5

Conditional Independence of Features - Example

● Suppose we had a feature vector $x = [x_1, x_2, x_3]^\top$, we can write out the conditional probability as

$$
p(\mathbf{x}|y) = p(x_1, x_2, x_3|y)
$$

= $p(x_3|x_2, x_1, y)p(x_2, x_1|y)$
= $p(x_3|x_2, x_1, y)p(x_2|x_1, y)p(x_1|y)$
=
$$
\prod_{d=1}^{D} p(x_d|x_{d-1}, ..., x_1, y)
$$

• In Naive Bayes we make the following simplifying assumption

$$
p(\mathbf{x}|y) = \prod_{d=1}^{D} p(x_d|y)
$$

2 informatics

Spam Email Classification Example

- The task is to separate spam from ham (i.e. 'not spam') emails
- We have access to the following dataset containing six emails

• We can fit a **Naive Bayes classifier** to this data so that we can classify new emails

Representing Text Data

 \bullet We need to turn each email into a ve

Naive Bayes with

- We can simply use a binary feature *a* or not
- \bullet For example, for a vocabulary with t {'password', 'review', 'send', 'us', 'yo

The email containing the text "send *x* = [1*,* 0*,* 1*,* 1*,* 1*,* 0]

 $\bullet\;$ We can exclude common words, e.g.

7

Representing Text Data

• Given the following vocabulary we can extract features from our data: { 'password', 'review', 'send', 'us', 'your', 'account' }

Modelling Binary Features

• As the features are **binary**, i.e. *x^d* ∈ {0*,* 1}, we can use the Bernoulli distribution to represent the class condition density

$$
p(\mathbf{x}|y=c;\boldsymbol{\theta}) = \prod_{d=1}^{D} \text{Ber}(x_d | \phi_{dc})
$$

• Here, $\phi_{dc} \in [0, 1]$ is the probability that $x_d = 1$ when *y* is class *c*

$$
Ber(x_d | \theta_{dc}) = \theta_{dc}^{x_d} (1 - \theta_{dc})^{(1 - x_d)}
$$

• In the case of binary features, the maximum likelihood estimate is

$$
\hat{\phi}_{\text{MLE}} = \frac{N_{dc}}{N_c}
$$

i.e. the empirical fraction of times that feature *d* is present in examples from class *c*

 $\mathbf{\Omega}$ informatics

10

\mathbb{R} informatics

Spam Classification Example

 $p(\text{spam}) = 4/6$ $p(\text{ham}) = 2/6$

• Per‑class likelihoods:

Classifying New Data - Spam Likelihood

- Given an *new* email we would like to be able to classify it
- For example, given the test email: "review us now"
- $x_t = [0, 1, 0, 1, 0, 0]$ ⊺

• Class priors: $p(\text{spam}) = 4/6$ $p(\text{ham}) = 2/6$

$p(x_t | \text{spam}) = p(0, 1, 0, 1, 0, 0 | \text{spam})$

$$
= (1 - \frac{2}{4})(\frac{1}{4})(1 - \frac{3}{4})(\frac{3}{4})(1 - \frac{3}{4})(1 - \frac{1}{4}) = 0.004
$$

12

 $\mathbf{\Omega}$ informatics

13

Classifying New Data - Ham Likelihood

- Given an *new* email we would like to be able to classify it
- Class priors: $p(\text{spam}) = 4/6$ $p(\text{ham}) = 2/6$
- For example, given the test email: "review us now"
- $x_t = [0, 1, 0, 1, 0, 0]$ [†]

$$
p(\mathbf{x}_t | \text{ham}) = p(0, 1, 0, 1, 0, 0 | \text{ham})
$$

= $(1 - \frac{0}{2})(\frac{2}{2})(1 - \frac{1}{2})(\frac{1}{2})(1 - \frac{1}{2})(1 - \frac{1}{2}) = 0.0625$

 \mathbb{R} informatics

Problems With Naive Bayes

• **Zero‑frequency problem**

- e.g. any email containing the word "password" is spam p (password|ham) = $0/2$
- Solution: never allow *zero* probabilities
- Laplace smoothing: add a small positive number to all counts

$$
p(x_d|y) = \frac{N_{dc} + \epsilon}{N_c + 2\epsilon}
$$

- **Independence assumption**
	- Every feature contributes independently
	- e.g. you can fool Naive Bayes by adding lots of 'hammy' words

Classifying New Data - Prediction

• From our Bayes classifier, we can obtain our **posterior** probability as

 $p(\text{ham}|\textbf{x}_t) = \frac{p(\textbf{x}_t|\text{ham})p(\text{ham})}{p(\textbf{x}_t|\text{ham})p(\text{ham}) + p(\textbf{x}_t|\text{ham})}$ $p(\mathbf{x}_t | \text{ham}) p(\text{ham}) + p(\mathbf{x}_t | \text{spam}) p(\text{spam})$ $=\frac{0.0625 \times 2/6}{0.004 \times 4/6 + 0.0031}$ $0.004 \times 4/6 + 0.0625 \times 2/6$ = 0*.*88

- Thus, according to our model, the probability that "review us now" is a ham email is $p(\text{ham}|x_t) = 0.88$ and by extension, $p(\text{spam}|x_t) = 1 - 0.88$
- $\mathbf{\Omega}$ informatics

Missing Data

- Suppose we do not have the value for some feature *xj*?
- e.g. some medical test was not performed on the patient
- How can we compute $p(x_1 = 1, ..., x_i = ?, ... x_d | y)$?
- This is easy with Naive Bayes
	- We simply ignore the feature in any instance where the value is *missing*
	- We compute the likelihood based on observed features only

$$
p(\mathbf{x}|y) = \prod_{\substack{d=1\\d\neq j}}^D p(x_d|y)
$$

◦ No need to 'estimate' or explicitly model missing features

14

EX informatics

Continuous Feature Exam

• Task: Distinguish alpacas from llama

Naive Bayes with Continuous Data

S informatics

Continuous Feature Example - Data

- Task: Distinguish alpacas from llamas
	- Classes: *y* ∈ {*a, l*}
	- Features: height (cm) and weight (kg)
	- \circ Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
	- Assume height and weight are independent

Naive Bayes with Continu

● In the case of real-valued features, x distribution

 $p(x|y=c; \theta)$

- Here μ_{dc} is the **mean** of feature d wh
- **•** This is equivalent to Gaussian discriminant *matrices*

Continuous Feature Example - Model

- Task: Distinguish alpacas from llamas
	- Classes: *y* ∈ {*a, l*}
	- Features: height (cm) and weight (kg)
	- \circ Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
- Assume height and weight are independent
- Class priors: $p(a) = N_a/N$ and $p(l) = N_l/N$
- Class conditionals for alpacas:
	- Height ∼ N (*xh*|*ha,* ² *ha*)
	- Weight ∼ N (*xw*|*wa,* ² *wa*)
- Class conditionals for llamas:
	- Height ∼ N (*xh*|*hl,* ² *hl*)
	- Weight ∼ N (*xw*|*wl,* ² *wl*)

Continuous Feature Example

• Class priors:

 $p(a) = N_a/N$, $p(l) = N_l/N$

- Class conditionals for alpacas: ◦ Height ∼ N (*xh*|*ha,* ² *ha*)
- Weight ∼ N (*xw*|*wa,* ² *wa*)
- Class conditionals for llamas:
- Height ∼ N (*xh*|*hl,* ² *hl*)
- Weight ∼ N (*xw*|*wl,* ² *wl*)

21

Problems With Naive Bayes

• The conditional independence assumption used by Naive Bayes can fail to capture relationships that may be present in some datasets

Summary

B informatics

- We presented the **Naive Bayes** classifier
- It assumes that *features* are conditionally independent given the *class*
- This results in a reduction in the number of parameters we need to learn
- We can apply it to both *discrete* and *continuous* data
- This underlying assumption of Naive Bayes is a simplification that will not necessarily work for all datasets

