

Naive Bayes Classification

Generative Classification

- In classification the goal is to a learn a function $\hat{y} = f(x; \theta)$
 - $y \in \{1, ..., C\}$ is one of *C* classes (e.g. spam / ham, digits 0-9)
- $\boldsymbol{x} = [x_1, ..., x_D]^{\top}$ are the features (e.g. continuous or discrete)
- In probabilistic classification we choose the most probable class given an observation

$$\hat{y} = \arg\max_{c} p(y = c | \boldsymbol{x})$$

• We can use **Bayes's rule** to convert the class prior and class-conditionals to a posterior probability for a class

 $p(y = c | \mathbf{x}) = \frac{p(\mathbf{x} | y = c) p(y = c)}{\sum_{c'} p(\mathbf{x} | y = c') p(y = c')} \qquad \text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$

Generative Classification - Components

$$p(y = c | \boldsymbol{x}) = \frac{p(\boldsymbol{x} | y = c)p(y = c)}{p(\boldsymbol{x})}$$

- $p(\boldsymbol{x}|\boldsymbol{y} = \boldsymbol{c})$: Likelihood
 - $\circ~$ Class conditional density for each class
 - \circ Describes how likely we are to see observation x for a given class
- p(y = c): Prior probability
 - The prior for each class
 - Encodes which classes are common and which are rare
- $p(\mathbf{x})$: Evidence
 - $p(\boldsymbol{x}) = \sum_{c'} p(\boldsymbol{x}|y = c')p(y = c')$
 - Normalises the probabilities across observations
 - Does not impact which class is the most likely

Representing the Class Conditional Density

- Representing the prior p(y) for each class is straight forward, i.e. we can compute frequency of each class
- We need to choose a probabilistic model for our conditional density p(x|y)
- For example, for multivariate continuous data i.e. $x \in \mathbb{R}^D$, we can use the multivariate Gaussian with parameters μ_c and Σ_c
- However, this requires estimating D(D+1)/2 parameters for each class covariance matrix Σ_c , which may be problematic as the dimensionality D gets large

Naive Bayes Assumption

• Naive Bayes makes the *simplifying* assumption that the **features are conditionally independent given the class label**

$$p(\boldsymbol{x}|y) = \prod_{d=1}^{D} p(x_d|y)$$

- The model is called "*naive*" since we do not expect the features to be independent, even conditional on the class labels
- Even though this assumption is not typically true, Naive Bayes can still work well in practice

informatics

Independence

informatics

• Independence means that one variable does not affect another, *A* is (*marginally*) independent of *B* if

$$p(A|B) = P(A)$$

• Which, from the definition of the conditional probability, is equivalent to saying

p(A, B) = P(A)P(B)

• A is conditionally independent of C given B if

$$p(A|C, B) = p(A|B)$$

i.e. once we know B, knowing C does not provide additional information about A

informatics

Conditional Independence - Example

• The probabilities of going to the beach and having a heat stroke are not independent, i.e.

p(B, S) > p(B)p(S)

• However, they may be independent if we know the weather is hot

p(B, S|H) = p(B|H)p(S|H)

- Hot weather "explains" all the dependence between the beach and heatstroke
- In classification, the class label explains all the dependence between the features

6

4

5

Conditional Independence of Features - Example

• Suppose we had a feature vector $x = [x_1, x_2, x_3]^{T}$, we can write out the conditional probability as

$$p(\mathbf{x}|y) = p(x_1, x_2, x_3|y)$$

= $p(x_3|x_2, x_1, y)p(x_2, x_1|y)$
= $p(x_3|x_2, x_1, y)p(x_2|x_1, y)p(x_1|y)$
= $\prod_{d=1}^{D} p(x_d|x_{d-1}, ..., x_1, y)$

• In Naive Bayes we make the following simplifying assumption

$$p(\boldsymbol{x}|y) = \prod_{d=1}^{D} p(x_d|y)$$

informatics

Spam Email Classification Example

- The task is to separate spam from ham (i.e. 'not spam') emails
- We have access to the following dataset containing six emails

id	email	status
1	"send us your password"	spam
2	"send us review"	ham
3	"review your account"	ham
4	"review us"	spam
5	"send your password"	spam
6	"send us your account"	spam

• We can fit a Naive Bayes classifier to this data so that we can classify new emails

Naive Bayes with Binary Data

Representing Text Data

- We need to turn each email into a vector $oldsymbol{x}$
- We can simply use a binary feature $x_d \in \{0, 1\}$ to indicate if a specific word is present or not
- For example, for a vocabulary with the following words: { 'password', 'review', 'send', 'us', 'your', 'account' }

The email containing the text "send us your password" would be encoded as x = [1, 0, 1, 1, 1, 0]

• We can exclude common words, e.g. 'a', 'the', ...

Representing Text Data

• Given the following vocabulary we can extract features from our data: { 'password', 'review', 'send', 'us', 'your', 'account' }

id	email	feature	status
1	"send us your password"	[1, 0, 1, 1, 1, 0]	spam
2	"send us review"	[0, 1, 1, 1, 0, 0]	ham
3	"review your account"	[0, 1, 0, 0, 1, 1]	ham
4	"review us"	[0, 1, 0, 1, 0, 0]	spam
5	"send your password"	[1, 0, 1, 0, 1, 0]	spam
6	"send us your account"	[0, 0, 1, 1, 1, 1]	spam

Modelling Binary Features

• As the features are **binary**, i.e. $x_d \in \{0, 1\}$, we can use the Bernoulli distribution to represent the class condition density

$$p(\boldsymbol{x}|\boldsymbol{y} = c; \boldsymbol{\theta}) = \prod_{d=1}^{D} \text{Ber}(x_d|\phi_{dc})$$

• Here, $\phi_{dc} \in [0, 1]$ is the probability that $x_d = 1$ when y is class c

$$\mathsf{Ber}(x_d|\theta_{dc}) = \theta_{dc}^{x_d} (1 - \theta_{dc})^{(1-x_d)}$$

• In the case of binary features, the maximum likelihood estimate is

$$\hat{\phi}_{\mathsf{MLE}} = \frac{N_{dc}}{N_c}$$

i.e. the empirical fraction of times that feature d is present in examples from class \boldsymbol{c}

10

Spam Classification Example

id	email	status
1	"send us your password"	S
2	"send us review"	h
3	"review your account"	h
4	"review us"	S
5	"send your password"	S
6	"send us your account"	S
	-	•

 $p(spam) = 4/6 \quad p(ham) = 2/6$

•	Per-class	likelihoods:	

$p(x_d spam)$	$p(x_d ham)$	x_d
2/4	0/2	password
1/4	2/2	review
3/4	1/2	send
3/4	1/2	us
3/4	1/2	your
1/4	1/2	account

Classifying New Data - Spam Likelihood

- Given an *new* email we would like to be able to classify it
- For example, given the test email: "review us now"
- $\boldsymbol{x}_t = [0, 1, 0, 1, 0, 0]^{\mathsf{T}}$

• Class priors: p(spam) = 4/6 p(ham) = 2/6

٠	Per-class likelihoods:		
	$p(x_d spam)$	$p(x_d ham)$	x_d
	2/4	0/2	password
	1/4	2/2	review
	3/4	1/2	send
	3/4	1/2	us
	3/4	1/2	your
	1/4	1/2	account

$p(x_t|\text{spam}) = p(0, 1, 0, 1, 0, 0|\text{spam})$

$$= (1 - \frac{2}{4})(\frac{1}{4})(1 - \frac{3}{4})(\frac{3}{4})(1 - \frac{3}{4})(1 - \frac{1}{4}) = 0.004$$

12

Classifying New Data - Ham Likelihood

- Given an *new* email we would like to be able to classify it
- Class priors: p(spam) = 4/6 p(ham) = 2/6
- For example, given the test email: "review us now"
- $\boldsymbol{x}_t = [0, 1, 0, 1, 0, 0]^{\mathsf{T}}$

 Per-class likelihoods: 			
$p(x_d spam)$	$p(x_d ham)$	x_d	
2/4	0/2	password	
1/4	2/2	review	
3/4	1/2	send	
3/4	1/2	us	
3/4	1/2	your	
1/4	1/2	account	

$$p(\mathbf{x}_t | \mathsf{ham}) = p(0, 1, 0, 1, 0, 0 | \mathsf{ham})$$
$$= (1 - \frac{0}{2})(\frac{2}{2})(1 - \frac{1}{2})(\frac{1}{2})(1 - \frac{1}{2})(1 - \frac{1}{2}) = 0.0625$$

informatics

Problems With Naive Bayes

• Zero-frequency problem

- e.g. any email containing the word "password" is spam p(password|ham) = 0/2
- Solution: never allow zero probabilities
- $\circ~$ Laplace smoothing: add a small positive number to all counts

$$p(x_d|y) = \frac{N_{dc} + \epsilon}{N_c + 2\epsilon}$$

- Independence assumption
 - Every feature contributes independently
 - e.g. you can fool Naive Bayes by adding lots of 'hammy' words

Classifying New Data - Prediction

• From our Bayes classifier, we can obtain our posterior probability as

 $p(\mathsf{ham}|\boldsymbol{x}_t) = \frac{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham})}{p(\boldsymbol{x}_t|\mathsf{ham})p(\mathsf{ham}) + p(\boldsymbol{x}_t|\mathsf{spam})p(\mathsf{spam})}$ $= \frac{0.0625 \times 2/6}{0.004 \times 4/6 + 0.0625 \times 2/6}$ = 0.88

- Thus, according to our model, the probability that "review us now" is a ham email is p(ham|xt) = 0.88 and by extension, p(spam|xt) = 1 - 0.88

14

Missing Data

- Suppose we do not have the value for some feature *x_j*?
 - $\circ~\,$ e.g. some medical test was not performed on the patient
 - How can we compute $p(x_1 = 1, ..., x_j =?, ...x_d | y)$?
- This is easy with Naive Bayes
 - $\circ~$ We simply ignore the feature in any instance where the value is missing
 - We compute the likelihood based on observed features only

$$p(\boldsymbol{x}|y) = \prod_{\substack{d=1\\d\neq j}}^{D} p(x_d|y)$$

• No need to 'estimate' or explicitly model missing features

Naive Bayes with Continuous Data

Continuous Feature Example - Task

• Task: Distinguish alpacas from llamas based on size

informatics

Continuous Feature Example - Data

- Task: Distinguish alpacas from llamas
 - Classes: $y \in \{a, l\}$
 - Features: height (cm) and weight (kg)
 - Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
 - Assume height and weight are independent

Naive Bayes with Continuous Data

• In the case of real-valued features, $x_d \in \mathbb{R}$, we can use the univariate Gaussian distribution

$$p(\boldsymbol{x}|y=c;\boldsymbol{\theta}) = \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_{dc},\sigma_{dc}^2)$$

- Here μ_{dc} is the **mean** of feature d when the class label is c and σ_{dc}^2 is its **variance**
- This is equivalent to Gaussian discriminant analysis using *diagonal covariance matrices*

informatics

Continuous Feature Example - Model

- Task: Distinguish alpacas from llamas
- Classes: $y \in \{ a, l \}$
- $\circ~$ Features: height (cm) and weight (kg) ~
- Training examples: $\{(h_n, w_n, y_n)\}_{n=1}^N$
- Assume height and weight are independent
- Class priors: $p(a) = N_a/N$ and $p(l) = N_l/N$
- Class conditionals for alpacas:
 - Height ~ $\mathcal{N}(x_h | \mu_{ha}, \sigma_{ha}^2)$
 - Weight ~ $\mathcal{N}(x_w | \mu_{wa}, \sigma_{wa}^2)$
- Class conditionals for llamas:
 - Height ~ $\mathcal{N}(x_h | \mu_{hl}, \sigma_{hl}^2)$
- Weight ~ $\mathcal{N}(x_w | \mu_{wl}, \sigma_{wl}^2)$

informatics

Continuous Feature Example

• Class priors:

 $p(\mathbf{a}) = N_a/N, p(\mathbf{l}) = N_l/N$

- Class conditionals for alpacas:
 Height ~ N(x_h|μ_{ha}, σ²_{ha})
- Weight ~ $\mathcal{N}(x_w | \mu_{wa}, \sigma_{wa}^2)$
- Class conditionals for llamas:
- Height ~ $\mathcal{N}(x_h | \mu_{hl}, \sigma_{hl}^2)$
- Weight ~ $\mathcal{N}(x_w | \mu_{wl}, \sigma_{wl}^2)$

21

Problems With Naive Bayes

 The conditional independence assumption used by Naive Bayes can fail to capture relationships that may be present in some datasets

Summary

- We presented the Naive Bayes classifier
- It assumes that *features* are conditionally independent given the *class*
- This results in a reduction in the number of parameters we need to learn
- We can apply it to both *discrete* and *continuous* data
- This underlying assumption of Naive Bayes is a simplification that will not necessarily work for all datasets

