
 

 

 

 Applied Machine Learning (AML)
Introduction to Classification

Oisin Mac Aodha • Siddharth N.



Classification



Classification Overview
• In supervised learning, we are tasked with predicting an output y, given an input

feature vector x
• For classification problems, the output space is a set of mutually exclusive ‘classes’

(also commonly referred to as ‘labels’)

 

 

 

 



Binary versusMulticlass Classification
• In binary classificationwe have two possibilities, e.g. dog versus cat. Thus,

y ∈ {0, 1}, y ∈ {1, 2}, y ∈ {−1, +1}, ...
• Inmulticlass classificationwe can have C possible options, e.g. different breeds of

dog. Thus, y ∈ {1, ...,C}, where C is the number of classes of interest

 

 

 

 



Example Classification Problems
• Spam filtering

• Determining the object present in an image, i.e. image classification

• Fraudulent transaction detection

• Music genre classification

• Medical diagnostic tests

• ...

 

 

 

 



Example 1D Classification Problem
• We have collected a dataset containing the measurements of the petal lengths (in

cm) of plants from two different species: species A and species B
• Thus, we have a one dimensional (1D) continuous measurement x ∈ R and a binary

class label y ∈ {0, 1}

 

 

 

 

 

 



Example 1D Classification Problem
• We have collected a dataset consisting of the measurements of the petal length (in

cm) of two different species of plants: species A and species B

• Thus, we have a one dimensional (1D) continuous measurement x ∈ R and a binary
class label y ∈ {0, 1}

• For species A, we have five measurements {1.8, 2.1, 2.5, 3.2, 3.8} and for species B we
have three {5.8, 6.7, 7.0}

• We can write our datasetD = {(xn, yn)}N
n=1 =

{(1.8, 0), (2.1, 0), (2.5, 0), (3.2, 0), (3.8, 0), (5.8, 1), (6.7, 1), (7.0, 1)}

 

 

 

 



The Generative Approach
• Given a new observation x, can we predict which of the two classes it most likely

belongs to?

• To do this, one approach is to fit amodel to our already observed data

• We can then use this model to make predictions about unobserved (i.e. new) data

• For continuous features, one obvious choice is the Gaussian distribution
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Univariate Gaussian Distribution
• The Gaussian (normal) distribution is a very widely used distribution for real‑valued

random variables, i.e. x ∈ R

• The probability density function of the Gaussian is defined as

N(x|𝜇, 𝜎2) = 1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2 (x − 𝜇)2
)

• There are two parameters, themean 𝜇 which controls where the distribution is
centred and the variance 𝜎2 which controls howwide it is

𝜇 =
1
N

N∑
n=1

xn �̂�2 =
1
N

N∑
n=1

(xn − 𝜇)2
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Parameters of the Univariate Gaussian Distribution
• Themean 𝜇 controls where the distribution is centred and the variance 𝜎2 controls

howwide it is
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Generative Classifier
• For binary classification, we begin by defining a model for each of our two classes

• Wewill make the assumption that, conditioned on the class, the data is Gaussian
distributed

• For data from class 0, we will assume that it is generated from
x|y = 0 ∼ N(x|𝜇0, 𝜎2

0 )
• For data from class 1, we will assume that it is generated from

x|y = 1 ∼ N(x|𝜇1, 𝜎2
1 )
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Revisiting the 1D Example
• We can fit our two per‑class Gaussians to our dataset

D = {(1.8, 0), (2.1, 0), (2.5, 0), (3.2, 0), (3.8, 0), (5.8, 1), (6.7, 1), (7.0, 1)}

 

 

 

 



Generative Classifier - Making Predictions
• Now that we have a model for each class, and assuming that we have estimated the

parameters for them (more on this later), we can use them tomake predictions

• For a new test datapoint x we can simply assign it to the class with the largest output

ŷ = argmax
c

N(x|𝜇c, 𝜎
2
c )

• Wemay also want to know how ‘likely’ it is that a test datapoint is from a given class,
e.g. from class 1

p̂1 =
N(x|𝜇1, 𝜎2

1 )
N (x|𝜇0, 𝜎2

0 ) + N (x|𝜇1, 𝜎2
1 )

where p̂1 ∈ [0, 1]
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Adding ‘Prior’ Knowledge
• In many cases, wemade have prior knowledge that is relevant to our classification

problem

• For example, wemay have manymore observations from one class than another

• We can encode this information as a weighting factor for each class, 𝜙0 and 𝜙1, where
𝜙1, 𝜙0 ∈ [0, 1]

• In the binary case 𝜙1 = 1 − 𝜙0, i.e. 𝜙0 + 𝜙1 = 1
• We can then combine this with the expression from the previous slide to obtain

p̂1 =
N(x|𝜇1, 𝜎2

1 )𝜙1

N(x|𝜇0, 𝜎2
0 )𝜙0 + N(x|𝜇1, 𝜎2

1 )𝜙1
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Bayes Classifier
• We came up with the following expression for making predictions for new data

p̂1 =
N(x|𝜇1, 𝜎2

1 )𝜙1

N(x|𝜇0, 𝜎2
0 )𝜙0 + N(x|𝜇1, 𝜎2

1 )𝜙1

• It turns out that this is just a restatement of Bayes’ rule

p(y = c|x) = p(x|y = c)p(y = c)∑
c′ p(x|y = c′)p(y = c′) =

likelihood × prior
evidence

• Note, here we have omitted the dependence on the parameters for simplicity
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Bayes’ Rule
• Bayes’ rule can be derived though application of the product rule, i.e.

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

p(y|x) = p(x|y)p(y)
p(x)

• p(y|x) is the posterior distribution of y, conditioned on x
• p(x|y) is the likelihood of x, conditioned on y
• p(y) is the prior distribution over y, i.e. what we know about y before seeing any data
• p(x) is the evidence, which can be computed bymarginalising over the unknown y,

i.e.
∑

y p(x|y)p(y)
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Maximum Likelihood Estimation



Maximum Likelihood Estimation
• In binary classification we have a set of ND pairs of observations, where

D = {(xn, yn)}ND
n=1

• The process of learning the model parameters θ from our datasetD is calledmodel
fitting or training

• One common approach for fitting a model to data, is calledMaximum Likelihood
Estimation (MLE)

• Here we aim to find the parameters that assign the highest likelihood to our data
given our model, i.e. the ones that maximise the likelihood

θ̂MLE = argmax
θ

p(D|θ)
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Independence Assumption
• For convenience, we typically assume that the training data are independent and

identically sampled from the same distribution, i.e. the iid assumption

p(D|θ) =
ND∏
n=1

p(xn, yn;θ)

 

 

 

 



Log Likelihood
• Taking the product of many terms can introduce numerical issues. To overcome this,

we take the log which will not impact where the maximum of the function is

LL(θ) = log p(D|θ)

= log
ND∏
n=1

p(xn, yn;θ)

=
ND∑
n=1

log p(xn, yn;θ)

• Recall that the log of a product equals the sum of the logs, i.e.
log(ab) = log(a) + log(b)
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Negative Log Likelihood
• Many optimisation algorithms are designed tominimise functions. We can instead

write the log likelihood (LL) as the Negative Log Likelihood (NLL)

NLL(θ) = −
ND∑
n=1

log p(xn, yn;θ)

• Maximising the LL is equivalent to minimising the NLL

θ̂MLE = argmin
θ

NLL(θ)
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Negative Log Likelihood
• We can rewrite our expression for the NLL as

NLL(θ) = −
ND∑
n=1

log p(xn, yn;θ)

= −
ND∑
n=1

log
[
p(yn;θb)p(xn |yn;θg)

]
= −

[ND∑
n=1

log p(yn;θb)
]

︸                    ︷︷                    ︸
Bernoulli NLL of labels

−
[ND∑

n=1
log p(xn |yn;θg)

]
︸                      ︷︷                      ︸
Guassian NLL of features

• These two terms depend on different sets of parameters θ = {θb, θg}, so they can be
optimised independently

 

 

 

 



Negative Log Likelihood
• We can rewrite our expression for the NLL as

NLL(θ) = −
ND∑
n=1

log p(xn, yn;θ)

= −
ND∑
n=1

log
[
p(yn;θb)p(xn |yn;θg)

]

= −
[ND∑

n=1
log p(yn;θb)

]
︸                    ︷︷                    ︸
Bernoulli NLL of labels

−
[ND∑

n=1
log p(xn |yn;θg)

]
︸                      ︷︷                      ︸
Guassian NLL of features

• These two terms depend on different sets of parameters θ = {θb, θg}, so they can be
optimised independently

 

 

 

 



Negative Log Likelihood
• We can rewrite our expression for the NLL as

NLL(θ) = −
ND∑
n=1

log p(xn, yn;θ)

= −
ND∑
n=1

log
[
p(yn;θb)p(xn |yn;θg)

]
= −

[ND∑
n=1

log p(yn;θb)
]

︸                    ︷︷                    ︸
Bernoulli NLL of labels

−
[ND∑

n=1
log p(xn |yn;θg)

]
︸                      ︷︷                      ︸
Guassian NLL of features

• These two terms depend on different sets of parameters θ = {θb, θg}, so they can be
optimised independently

 

 

 

 



Negative Log Likelihood
• We can rewrite our expression for the NLL as

NLL(θ) = −
ND∑
n=1

log p(xn, yn;θ)

= −
ND∑
n=1

log
[
p(yn;θb)p(xn |yn;θg)

]
= −

[ND∑
n=1

log p(yn;θb)
]

︸                    ︷︷                    ︸
Bernoulli NLL of labels

−
[ND∑

n=1
log p(xn |yn;θg)

]
︸                      ︷︷                      ︸
Guassian NLL of features

• These two terms depend on different sets of parameters θ = {θb, θg}, so they can be
optimised independently

 

 

 

 



Bernoulli Distribution
• In the case of the binary label data y ∈ {0, 1}, we can use a Bernoulli prior

• The probability mass function with the parameter 𝜙 of the Bernoulli is defined as

Ber(y|𝜙) =
{

1 − 𝜙 if y = 0
𝜙 if y = 1

• We can rewrite this as
Ber(y|𝜙) = 𝜙y(1 − 𝜙) (1−y)
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MLE for the Bernoulli Distribution
• We can compute the NLL for the Bernoulli with θb = {𝜙} as follows

NLL(𝜙) = −
ND∑
n=1

log p(yn;θb)

= −
ND∑
n=1

log
[
𝜙yn (1 − 𝜙) (1−yn)

]
= −N1 log(𝜙) − N0 log(1 − 𝜙)

• The MLE can be found by solving 𝜕
𝜕𝜙NLL(𝜙) = 0

• Which results in

𝜙 =
N1

N0 + N1
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Gaussian Likelihood
• For the Gaussian NLL we need to solve for the parameters θg = {𝜇0, 𝜎2

0 ,𝜇1, 𝜎2
1 }, i.e. the

parameters for both Gaussians (one for each class)

NLL(𝜇0, 𝜎
2
0 , 𝜇1, 𝜎

2
1 ) = −

ND∑
n=1

log p(xn |yn;θg)

= −
ND∑
n=1

log
[
N(xn |𝜇0, 𝜎

2
0 ) (1−yn)N(xn |𝜇1, 𝜎

2
1 ) (yn)

]
= −

ND∑
n=1

(1 − yn) log
[
N(xn |𝜇0, 𝜎

2
0 )

]
−

ND∑
n=1

yn log
[
N(xn |𝜇1, 𝜎

2
1 )

]
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0 ,𝜇1, 𝜎2
1 }, i.e. the

parameters for both Gaussians (one for each class)
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Splitting the Data
• For convenience we will split the data into two subsetsD0 andD1, where N0 = |D0 |

and N1 = |D1 |
• Here,D0 ⊂ D is the subset of data where yn = 0, andD1 is the subset where yn = 1
• We can then find the maximum likelihood estimate for each set separately

• Our expression for the Guassian NLL now becomes

NLL(θg) = −
∑

xn∈D0

logN(xn |𝜇0, 𝜎
2
0 ) −

∑
xn∈D1

logN(xn |𝜇1, 𝜎
2
1 )
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MLE for Univariate Gaussians
• Here, we will just focus on one of the Gaussians, i.e. the case where yn = 0

NLL(𝜇0, 𝜎
2
0 ) = −

∑
xn∈D0

logN(xn |𝜇0, 𝜎
2
0 )

= −
∑

xn∈D0

log


1√

2𝜋𝜎2
0

exp

(
− 1

2𝜎2
0
(xn − 𝜇0)2

)
=

N0
2 log(2𝜋) + N0

2 log(𝜎2
0 ) +

∑
xn∈D0

(xn − 𝜇0)2

2𝜎2
0

• Theminimum of the NLLmust satisfy the following conditions
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𝜕𝜇0
NLL(𝜇0, 𝜎

2
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0
NLL(𝜇0, 𝜎

2
0 ) = 0
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MLE Solution for Univariate Gaussians
• Solving for the MLE for both classes we get the following expressions for themeans

𝜇0 =
1

N0

∑
xn∈D0

xn, 𝜇1 =
1

N1

∑
xn∈D1

xn

• With the following for the variances

𝜎0
2 =

1
N0

∑
xn∈D0

(xn − 𝜇0)2, 𝜎1
2 =

1
N1

∑
xn∈D1

(xn − 𝜇1)2
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Bringing it all Together
• We have solved for the parameters θ = {𝜙, 𝜇0, 𝜎2

0 , 𝜇1, 𝜎2
1 } of our model using MLE

• Which we can use in our Bayes classifier

p(y = 1|x) = p(x|y = 1)p(y = 1)
p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

• Which in the case of our binary classification model, is equivalent to

p(y = 1|x) =
N(x|𝜇1, 𝜎2

1 )𝜙
N(x|𝜇0, 𝜎2

0 ) (1 − 𝜙) + N (x|𝜇1, 𝜎2
1 )𝜙
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Multivariate Classification



Multivariate Data
• Previously we discussed the case where the input feature was a one dimensional

continuous value, i.e. x ∈ R
• In practice, most datasets will be multivariate, i.e. x ∈ RD

• We need to define model for multivariate data

 

 

 

 



Multivariate Gaussian
• The probability density function (PDF) of themultivariate Gaussian is given by

N(x|µ, 𝚺) = 1
(2𝜋) (D/2) |𝚺|1/2

exp
(
−0.5(x − µ)⊺𝚺−1(x − µ)

)
• Here,µ ∈ RD is themean vector and 𝚺 ∈ RD×D is the covariancematrix

• The univariate Gaussian is a special case of this PDF

 

 

 

 



MLE forMultivariate Gaussian

• Themaximum likelihood estimate of themean vector is defined as

µ̂ =
1
N

N∑
n=1

xn

• Themaximum likelihood estimate of the covariancematrix is defined as

�̂� =
1
N

N∑
n=1

(xn − µ̂) (xn − µ̂)⊺
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Properties of the CovarianceMatrix
• It is a square matrix (D × D) specifying the covariance between each pair of elements

of a given random vector

• Intuitively, it generalises the notion of variance tomultiple dimensions

• Themain diagonal contains variances, i.e. the covariance of each dimension with
itself

• The covariance matrix is symmetric, i.e. 𝚺 = 𝚺⊺ and 𝚺−1 = (𝚺−1)⊺

• It is positive semi‑definite, i.e. x⊺𝚺x ≥ 0 and x⊺𝚺−1x ≥ 0
• The full covariance matric has D(D+1)/2 free parameters
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Types of CovarianceMatrices
• There are three types of covariance matrix

• Here, we show some 2D examples

𝚺spher =

[
𝜎2 0
0 𝜎2

]
𝚺diag =

[
𝜎2

1 0
0 𝜎2

2

]
𝚺full =

[
𝜎2

11 𝜎2
12

𝜎2
21 𝜎2

22

]

 

 

 

 



Types of CovarianceMatrices

 

 

Simon Prince ‑ Computer Vision Models (Book)

 

 

 

 



ClassificationWithMultivariate Gaussians

• We can use the same generative classification model as before

p(y = c|x) = p(x|y = c)p(y = c)∑
c′ p(x|y = c′)p(y = c′)

• In the multivariate case, we use a multivariate Gaussian for the class conditional

density

p(x|y = c) = N(x|µc, 𝚺c)

 

 

 

 



Gaussian Discriminant Analysis - 2D Example
• In this example we have two dimensional data from two different classes, blue and

red
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Gaussian Discriminant Analysis - 2D Example
• Here we visualise the underlying Gaussian distributions that generated the observed

data
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Quadratic Discriminant Analysis - 2D Example
• If we estimate a separate covariance matrix for each class (i.e. 𝚺0 and 𝚺1) and fit our

classifier we get a quadratic decision boundary
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Linear Discriminant Analysis - 2D Example
• If instead, we assume that both classes share the same covariance matrix (i.e.

𝚺0 = 𝚺1) and fit our classifier we get a linear decision boundary
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Multiclass Classification
• We can apply the samemodel in the multiclass case, i.e. where y ∈ {1, ...,C} and

C > 2, by simply defining a class conditional model p(x|y = c) for each class
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Summary
• We introduced the problem of supervised classification

• We showed that simple Guassian basedmodels can be used for classification with
continuous data through the application of Bayes’ rule

• The parameters of these models are estimated using maximum likelihood estimation

• These models can be used for both single or vector input data and for binary or
multiclass outputs
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