Predicting Cuisines of Recipes

Abstract

The application of machine learning and data mining provides effective predictive
models for cuisine classification. However, a more difficult task is to complete a
partial recipe by adding missing ingredients. We approach this problem using rec-
ommendation systems based on collaborative filtering. In this project, we propose
a cuisine classifier as well as a recommending system to complete partial recipes.
We evaluate all models and selected Random Forest as the best classification algo-
rithm, and KNN with z-score as the best collaborative filtering algorithm for the
recommendation system. The rest of the algorithms are discussed in more detail
and future work is proposed.

1 Introduction

Recommendation systems are highly desirable for many applications within the scientific community.
The increased interest in improving recommendation systems comes from suggesting the use of
collaborative filtering to improve recommender objects or items under a given task. In this study,
we apply data mining and machine learning techniques to explore recommending ingredients and
predicting cuisines. This interest in suggesting cuisines or completing incomplete recipes has greatly
increased especially with the ease of searching for endless amounts of recipes online. This popularity
motivates researchers to identify a cuisine given a recipe as well as completing an incomplete recipe.
Therefore, this paper will analyze and implement a classifier and a recommendation system in this
context.

There have been quite a few implementations of classifying cuisines based off a given recipe [5].
Previous techniques include Naive Bayes, Random Forest, and Linear Support Vector Machines.
Each have their advantages and disadvantages. Naive Bayes provides a probabilistic model and
is considered a simple approach to classifying cuisines. Random Forest classifiers provide many
decision trees becoming one of the popular classifiers to use especially for data mining. Lastly, linear
SVMs provide high efficiency in high dimensions and memory. We examine the above classifiers to
observe which provides the best performance for classifying cuisines.

Various forms of recommendation systems are now a necessary aspect in people’s everyday lives. This
dependency in recommendation systems gives the ability to assist in minor or even major decisions
based off predictions or certain evaluations. Collaborative filtering is becoming the replacement
for these normal recommendation systems. This method uses known information about a group
in order to make recommendations of unknown options [12]. This is done by comparing previous
preferences in order to make a decision about a new preference. In determining the best model for
the recommendation task, we experiment with model-based and memory-based collaborative filtering
techniques due to each having their own advantages and disadvantages.

This paper will focus on predicting the type of a cuisine from a given list of ingredients for recipes.
We will further explore techniques that can be implemented to make decisions in order to complete




partial recipes. Collaborative filtering will come to play in this aspect of the assignment. With these
techniques in mind, this paper will discuss the metrics and performance in order to evaluate each
method effectively. We structure the paper as the following: Section|2|provides details about the
dataset and task. Secliondiscusses the exploratory data analysis techniques used to better visualize
and interpret the given data. Sectionwill give information on the methodology including the
classification technique chosen as well as the technique used for recommending partial recipes. We
will provide and interpret our results in section Lastly, sectionwill conclude our research and
provide future work in this area.

2 Data preparation

This section provides information on our approach to familiarize and prepare the data for classification
as well as recommending for partial recipes. The data contains ingredients for particular recipes in
order to make cuisine classifications. There are a total of 4,235 recipes with 709 ingredients from 12
cuisines for the classification aspect of this research paper. Since we are given a very small dataset,
we do not remove any ingredients and consider each ingredient to be an important item to consider in
classification.

We take additional steps to prepare the data for collaborative filtering in order to recommend
ingredients to partial recipes. We utilize Surprise [4] for building the recommendation system which
requires the data to be formatted a certain way. Therefore, we convert our data by using the recipe
ID and ingredient ID to get a specific score. Originally, our data shows each row representing a
recipe and each column representing an ingredient. We rearrange this format so our new data will
be formatted to be 3 columns: the first column contains the ID for the recipe; the second column
contains the name of the ingredient; the third is the rating. We consider the rating to be 0 if ingredient
is not in the recipe and 1 if the ingredient is present.

Our team considered combining similar ingredients that have different variations, such as various
types of rice or beans. The initial reasoning behind this was to remove any form of variation that was
not relevant. However, since we do not remove less frequently used ingredients within recipes since
the dataset is small and concise, we use the same reasoning for simplification.

We evaluate the classifier using the mean classification accuracy score over the k-splits in K-Fold.
As for evaluating the collaborative filtering algorithms, we use the common root mean squared error
(RMSE) in the Surprise application.

3 Exploratory Analysis

In order to gain a better understanding of the structure of our data, we apply exploratory data analysis
methods. This gives us a better insight on the relationships between the different ingredients as well
as between the ingredients and the cuisines.

Cuisine Chinese  English French German Greek  Indian
Shortest recipe 4 4 5 6 7 10
Longest recipe 22 21 28 26 27 28
Mean 10.3 114 12.5 12.5 14.8 16.0
Cuisine Italian  Japanese Mexican Moroccan Spanish  Thai
Shortest recipe 9 10 12 12 13 14
Longest recipe 30 29 33 34 32 42
Mean 16.4 17.8 18.2 213 22.2 22.7

Table 1: Length of the longest and shortest recipes for each cuisine. The overall longest and shortest
recipes are highlighted, as well as the largest mean recipe length.

We begin by analyzing the length of the recipes in each cuisine and the most common ingredients per
cuisine and overall. First, we determine the number of ingredients for the shortest and longest recipes
for each cuisine. Then, to better understand how the length of the recipes varied in each cuisine, we
determine the mean recipe length across cuisines (Appendix, The average recipe length , as well
as the length of the shortest and longest recipes for each cuisine is presented in Table
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We also look into the usage of the ingredients. This allows us to determine what the most commonly
used ingredients are (Appcndix, as well as the most characteristic ingredients for each cuisine
(Appendix , Overall, the most used ingredients are garlic, onion, olive oil, salt and chicken.
Determining the most frequently used ingredients for each cuisine is, however, not very relevant,
because ingredients like garlic are frequently used across all cuisines. Instead, we obtain the most
characteristic ingredients, which are the ingredients that are particularly common in that cuisine
considering their overall usage. For this, we obtain the average frequency of each ingredient across
all the cuisines and subtract it to the raw frequencies to get an adjusted usage score. We then use
this adjusted frequency to determine the most characteristic ingredient for each cuisine which are
presented in Table

Cuisine Chinese English French German Greek Indian
Ingredient S0y sauce potato butter pork oregano turmeric
Cuisine Italian Japanese Mexican Moroccan Spanish Thai
Ingredient | parmesan cheese rice wine  tortilla cumin sweet pepper  fish sauce

Table 2: Most characteristic ingredient for each cuisine.

In order to gain insight on the relationship between different ingredients, we compute the Pearson’s
Correlation Coefficient, p, between all pairs of ingredients. To identify linear relationships, we select
all pairs of ingredients that have a p € [—1, —0.7[U]0.7, 1], as we reason that -0.7 and 0.7 are good
thresholds. There were no pairs with a negative linear relationship (p € [—1, —0.7[) and only 5 pairs
with a positive linear relationship (p €]0.7,1]). These 5 pairs are presented in Appcndix'ﬁ along
with the corresponding coefficient.

Finally, in hopes to better visualize the data, we perform dimensionality reduction on the data set
using PCA. The number of features reduced from d = 700 to &£ = 175 as that allows for a cumulative
explained variance of 90%. The data with reduced dimensionality is presented in Figurcm where
each dot in the 2-D plane represents a recipe. We can observe that most recipes from Asian cuisines
(Indian, Japanese and Thai) appear more on the right of the plot, whereas recipes from European
cuisines (English, French, German, Greek, Italian and Spanish) appear more on the left. Therefore,
we see an apparent relationship between recipes from European cuisines as well as between recipes
from Asian cuisines.

Recipes by origin (PCA)

1s
10
05 . + Chinese
. English
French
oo German
+ Greek
Indian
-0 « Italian
Japanese
= Mexican
1.0 Moroccan
s Spanish
Thai
-15 -1.0 -0.5 0.0 05 10 15 20

Figure 1: Dimensionality reduction with PCA (k = 175).




4 Methodology

This section will describe all experiments performed to discover the best performing classifier for
predicting cuisines as well as recommending ingredients to incomplete recipes. All of the experiments
for the classifier and collaborative filtering recommendation system use methods for estimating the
generalization performance. We use cross-validation for both the classifier and the recommending
systems, with 5 folds for the classifier and 3 for the recommending system. The recommending
system is tested using Surprise’s cross validation method, which uses the Root Mean Squared Error
as a performance metric. This regression method is used in a classification task due to the fact that
it is a highly accepted evaluation measure for recommendation systems of the predicted rating and
the actual true rating [10]. This proves to be a good measure of accuracy while not assuming the
purpose of the recommendation system, even if there are more variables involved in making decisions
to recommend an ingredient [j[l,

4.1 Classifier

The first task involves building machine learning models that predict the type of cuisine for a given
recipe. We consider three well-known algorithms: a Random Forest classifier, a Support Vector
Machine (SVM), and a Naive Bayes Classifier. We use these classifiers not only because they are
widely used but also because they have been used in a similar task as ours [6]. This allows us to
evaluate each separately and decide on the best model to make the predictions. Naive Bayes is chosen
due to its simplicity. Although Random Forest does not always guarantee high performance, as shown
in the research mentioned above, it is excellent at recognizing unfamiliar patterns within a dataset
and will be considered [6]. Random Forest is ensemble learning. This means there is not only a
single instance of a trained model, but there are many instances, and the predictions are averaged
between all model predictions [zl] We also implement a Support Vector Machine due to its efficiency
and ability to handle nonlinear data. Support Vector Machines attempt to separate classes inside the
dataset by maximising a margin, only keeping count of the data points that are closest to the margins,
generally referred to as the support vectors. Usually, Random Forest algorithms are more suited for
multi-class problems, as is this one, and Support Vector Machines are to binary classifications. This
means in order to make predictions, the classes had to be previously one-hot encoded.

4.2 Collaborative Filtering

Secondly, we evaluate memory-based approaches versus model-based for collaborative filtering. We
consider the ratings to be 1 if the item is in the recipe and 0 if it is not present. Memory-based filtering
is one of the collaborative filtering techniques that is simple and effective [12]. We use the item-based
K-Nearest Neighbours and some of its variants as our memory-based algorithms. Essentially this
algorithm predicts the rating of a given ingredient by considering the average (weighted by similarity)
rating of its k& nearest neighbours, which are the most similar ingredients to it. There are disadvantages
to keep in mind with memory-based techniques, such as the need to compute a similarity matrix
that contains all the pair-wise similarities among ingredients I]E], This is the most computationally
expensive component of the algorithm.

Typical model-based algorithms involve the use of clustering, Markov Decision Processes (MDP),
and SVD decomposition. We focus on SVD-based algorithms which are based on factorizing the
ratings matrix. Specifically, the decomposition is described by the following equalion

Ss=uxvT (D

where ¥ is a pxp diagonal matrix containing the p largest singular values, U is the pxp matrix
containing the corresponding left-singular vectors, and V is an nxn orthonormal matrix containing
the right-singular vectors. ,

One possible limitation of this approach is the potential loss of information due to the dimensionality

reduction inherent in the decomposition. However, it has been noted that this technique is useful
when dealing with highly sparse data ,

In our research, we compare variations of K-Nearest Neighbors for the memory-based and SVD as the
model-based approach. We do not consider other variations of SVD, such as SVDpp, due to our data




notrelying on implicit rankings. We use the Surprise framework, a Python based recommender system
to implement both collaborative filtering techniques [E], All the techniques used are item-based,
meaning we compare similarity metrics between items based on ratings.

Specifically, we use the Surprise memory-based implementations for the different K-Nearest
Neighbor(KNN) variants: KNNBasic, KNNWithMeans, KNNWithZScore, and KNNWithBase-
line. KNNBasic implements the base KNN algorithm for collaborative filtering. KNNWithMeans
takes into account the mean ratings of each recipe. KNNwithZScore normalises the ratings using the
z-score from for each recipe. And, lastly, KNNWithBaseline adds a bias term to each rating. Given
the computational cost of each algorithm, we use the default values for most of the hyperparamaters
of each model to perform our model selection (see Sa:lion, Specifically, for the KNN variants use
the following number of neighbours: & = 40. We evaluate different similarity metrics as discussed in
more detail in Seclion For the SVD decomposition we use 100 factors (p = 100).

4.3 Similarity Measures

Finally, we wanted to evaluate the effect of using distinct similarity measures on collaborative filtering.
We consider the cosine similarity, the Pearson correlation coefficient and the mean squared difference
(msd).

4.3.1 Cosine similarity

The first similarity measured we test is the cosine as proposed by Sarwar, 2001 , Since the tests are
ingredient-based, instead of recipe-based, we use the formula shown in Equalion The similarities
can either be calculated between recipes or between ingredients, and the choice has a massive impact
on the results of the predictive algorithms. In this similarity, the two ingredients are considered to
be data points in a m-dimensional ingredient space. Their similarity is calculated by the cosine of
the angle between those points. In the equation, " R" stands for the recipe, "¢" and "j" are the two
ingredients being compared, "r" is the ranking of that ingredient for that recipe, and "-" stands for the
dot product of the two data points.
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4.3.2 Pearson correlation coefficient

The second similarity measure, the Pearson correlation coefficient is a modified version of the cosine
similarity, where the values are mean-centered. It was chosen as proposed by Spartus et al, 2016 ,
where they demonstrate that the cosine and Pearson similarities outperform other existing similarities
The formula for this method can be seen in Equalion
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pearson_sim(i, j) =

4.3.3 Mean Squared Difference

Finally, a third, less common method is tested, which is the Mean Squared Difference (MSD), as
recommended by [8]. It shows worse performance in datasets where users did not have many ratings.
However, since all our recipes have available ratings for all the ingredients (0 if the ingredient was
not present, and 1 otherwise), this problem should not affect the performance and we hence decide to
test it. Equalionshows how this similarity metric is calculated.
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5 Discussion

In this section, we explore multiple possible techniques on both the classification and recommendation
tasks in order to find optimal performance. In the recommendation task, we conduct a more exhaustive
search by also experimenting with different similarity measures for the memory-based techniques
and by removing the biases in the model-based technique. We use the mean performance from the
cross-validation to choose the best model for each task. These models are then evaluated on a test set.

5.1 Classification models

For the classification task, we experiment with three models: Naive Bayes, which serves as a baseline,
Random Forest and Support Vector Machine. The results from the cross-validation are presented
in Tﬂblc Since Naive Bayes is a very simple model and our data has a large number of features
(d = 706), the poor performance achieved by the model is expected. For the other two models, we
expected the performance to be considerably better. Since Random Forest achieves the best results,
we evaluate this model on the test set and achieve an accuracy of 73.8%.

Algorithm Validation
Naive Bayes 19.2%
Random Forest 73.9%
Support Vector Machine 71.8%

Table 3: Mean classification accuracy on cross-validation for different models. The best validation
performance was achieved by the Random Forest model (highlighted in bold).

As mentioned previously in Seclion we see worse performance errors within Asian cuisines and
European cuisines. For instance, the Chinese cuisine is sometimes misclassified with Indian, Japanese
or Thai, while the Greek cuisine recipes are sometimes misclassified with Spanish or Italian, in
accordance to the results previously found using PCA.

Results for Random Forest Classifier
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Figure 2: Confusion matrix for the test set results of the best performing classifier, Random Forest.

5.2 Recommendation models

For the recommendation task, we evaluate different collaborative filtering techniques and similarity
measures. The results of the cross-validation are presented in Tablc The performance of the
KNN-based techniques is different for each similarity and, in general, using the mean squared
difference yields better results. For the model-based techniques, using baselines (or biases) results
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in a smaller mean RMSE. Overall, KNNWithZScore achieves the best performance, with a mean
RMSE of 0.1090 #+ 0.0003.

Type Model Method  Similarity Biased RMSE
memory-based | KNNBasic - cosine - 0.1797 £ 0.0014
memory-based | KNNBasic - msd - 0.1221 £ 0.0008
memory-based | KNNBasic - pearson - 0.1457 + 0.0013
memory-based | KNNWithBaseline - cosine - 0.1457 £ 0.0008
memory-based | KNNWithBaseline - msd - 0.1135 £ 0.0003
memory-based | KNNWithBaseline - pearson - 0.1245 + 0.0002
memory-based | KNNWithMeans - cosine - 0.1462 + 0.0006
memory-based | KNNWithMeans - msd - 0.1135 £ 0.0004
memory-based | KNNWithMeans - pearson - 0.1253 £ 0.0011
memory-based | KNNWithZScore - cosine - 0.1122 + 0.0003
memory-based | KNNWithZScore - msd - 0.1146 + 0.0002
memory-based | KNNWithZScore - pearson - 0.1090 + 0.0003
model-based SVD - - True 0.1139 £ 0.0007
model-based SVD - - False 0.1174 £ 0.0005
Table 4: Mean RMSE and standard deviation on cross-validation for the different models with

different parameters. The best validation performance was achieved by KNNWithZScore model
using Pearson’s correlation coefficient as the similarity measure (highlighted in bold).

Finally, we evaluate the KNNWithZScore, which is chosen as the best algorithm according to the
cross-validation scores. We perform a grid search with cross-validation to find the best value for the
number of neighbours parameter, which we find to be & = 40. We use a held-out test set consisting
of ratings that are not used for the cross-validation procedure outlined above. To choose the held out
ratings, first we randomly choose 5% of the recipes in the data set. Then, we remove all the ratings of
the ingredients that were not used in the recipe, and randomly choose an ingredient that was used
in the recipe as a hidden ingredient and held its rating out for the test set. We consider two settings:
one where we compute the RMSE on all the test ratings and another where we compute it only if the
rating belongs to an ingredient that is present on the recipe. The RMSE in the first case is 0.0665
and in the second 0.8062. This large difference is due to the fact that the majority of the ratings in
the dataset are zero and this biases the model towards lower ratings. Therefore, when we evaluate
only on ingredients whose rating is 1, as is the case of the ingredients present in a recipe, the model
consistently underestimates the rating, leading to a poor RMSE.

We consider a different form of evaluation where we predict the hidden ingredient rather than
comparing the predicted ratings with the test ones. In this case, for each recipe, we predict the
ratings for all held-out ingredients from the test set and choose the one with the highest rating as
the recommended one. We then compare the recommended ingredient with the hidden ingredient
for each recipe and compute the accuracy obtained. Our model selects the comrect ingredient among
the held-out in 7% of the test recipes. Note that in this instance, the model had to recommend an
ingredient among around 700 that were not present in the recipe and so this low accuracy is expected.
Below, we show some example partial recipes and the recommendation of the model in Table

6 Conclusion

This paper evaluates and analyzes the prediction of cuisines as well as recommending ingredients to
partial recipes. We consider multiple classifiers in order to gain maximum classification performance.
We find the highest performance is achieved with a Random Forest Classifier. As for the recommen-
dation system, we explore using memory-based and model-based collaborative filtering approaches.
The best technique for collaborative filtering is KNNWithZScore with the default parameter values.
Future work can be done to improve our investigations. One should consider applying dimensionality
reduction to the dataset before classification. Further research can be done to test more model-based
techniques for the recommendation system.




Example |

broth, brown sugar, chili paste, cornstarch, egg,

Pactial secipe ketchup, olive oil, salt, soy sauce, sugar, vinegar
Recommended ingredient chicken
Hidden ingredient chicken
Example 2
Partial recipe baking powder, brandy, chicken,

egg, flour, ginger, ice water, salt

Recommended ingredient SOy sauce
Hidden ingredient SOy sauce
Example 3
Partial recipe cilantro, egg, garlic, ginger, green onion,

Recommended ingredient
Hidden ingredient

lemon grass, lime, turkey, water
S0y sauce
chile pepper

Example 4

Partial recipe

Recommended ingredient
Hidden ingredient

basil, chile pepper, green bean,
lemon, quinoa, shallot, soybean
chicken
tofu

Table 5: Example correct and incorrect recommendations made by the model.
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Appendices
A Top 10 ingredients overall.

Top 10 most used ingredients
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Figure 3: Top 10 ingredients overall
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B Top 10 ingredients per cuisine.
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Figure 4: Top 10 ingredients per cuisine
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C Mean ingredient

Mean ingredient count
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Figure 5: Mean ingredient count per cuisine

D High correlation ingredient pairs

Ingredient 1

Ingredient 2

Pearson’s correlation coefficient

Sofrito sauce Sazon goya 0.816
Coconut oil Almond butter 0.707
Kamaboko Burdock root 0.707

Sea cucumber Chinese mushroom 0.707

Gumbo French style green bean 0.707

Table 6: Ingred

ient pairs with the highest Pearson’s correlation coefficient.

12




