Predicting Cuisines of Recipes

Abstract

This report focuses on the the tasks of using the recipe ingredients for cuisine
prediction and recipe completion. We focus on exploring data transformations to
maximise the performance of the classification task using a variety of classifiers.
Best performance was achieved using TFIDF transformation with SVM, logistic
regression and KNN (AUC-ROCS of 0.974, 0.972 & 0.967 respectively). We take
forward KNN to explore a potential avenue for recipe completion using ingredient
similarity, describing several paths for further development.

1 Introduction

A cuisine is a unique style of cooking distinguished by specific ingredients and techniques typically
associated with a culture or geographic area. The ingredient lists of recipes offer great potential for
identifying the cuisine of a recipe as many ingredients or ingredient combinations are unique to a
specific cuisine. There are limited previous publications that explore recipe cuisine classification
using ingredient lists [7][10][4] with varying quality. All three of these papers use the Yummly dataset
[15] which was produced for a Kaggle challenge. This dataset is larger and more diverse than ours
with 50,000 recipes, 6000 unique ingredients and 20 cuisines. These papers achieved the best
results using SVM methods and gradient boosting although they were limited in their exploration
of data pre-processing or a variety of classifiers. More generally within text classification problems
classical classifiers (SVM and logistic regression) have been shown to perform as well as deep
learning methods and are also faster to train [8].

There are multiple applications of cuisine classification in academia and industry. Most simply
automatic classification of recipes could be useful for curation, for example, on a recipes website.
Tangentially, this capability could open up avenues for more dynamic processes such as recipe
completion, cuisine transformation or recipe generation. In this report we will focus on exploring the
optimal pre-processing and appropriate dimensionality reduction to achieve the best performance
with a variety of classification methods. We will also look at some aspects of collaborative filtering
for the prediction of ingredients needed to complete a partial recipe which could give chefs new ideas
for recipes or allow users to make use of what they already have in their pantry (buying only a few
additional ingredients).

2 Exploratory Data Analysis

The data set includes 4236 recipes from 12 cuisines with 709 distinct ingredients, labelled with what
type of cuisine (e.g., Italian, Japanese, Chinese, etc.) it is from. It was collected by Facundo Bellosi
as part of his MSc at the University of Edinburgh [1]. The recipes are bags-of-word, i.e. a list of an
ingredients alphabetically sorted. We work with the data as a binary 4236 x 709 matrix with each
row representing a recipe and columns representing ingredients. A 1 indicates that a given ingredient
is used in a recipe, and a 0 that it is not. We further use an additional column to represent each of
the 12 cuisines. The bags-of-words representation loses important information about the recipes, for
example we have no information on the amounts of each ingredient, nor the order in which they are
used. Stratified sampling of the original data set with 75% and 25% ratio (i.e. 3177 and 1059 data




points) was used to obtain cross validation training set and holdout test set respectively. Exploratory
data analysis was performed only on the training set.

Tablcmshow the most commonly used ingredients by cuisines as well as the most/least commonly
used ingredients across cuisines . Some ingredients seem to be associated with certain geographic
areas (e.g., soy sauce in Asian cuisines) while other are common across quite different cuisines (e.g.,
garlic and onion which are the top two most commonly used ingredients across all recipes in the
training set). A total of 23 ingredient had 0 occurrence in the training set. The boxplots in Figure El
illustrate the distribution of number of ingredients per recipe by cuisine. There seems to be some
moderate variability of the median and IQR across cuisines. Tukey’s fences (at 1.5x IQR) suggest
that only few data points may be considered outliers using this method.

TOP 3 MOST COMMONLY USED INGREDIENTS - INGREDIENT (PERCENTAGE)
CUISINE 1™ i A
CHINESE S0Y SAUCE (§4.15) GARLIC (60 GINGER (54.72)
ENGLISH ONION (54.72) BUTTER (34.34) POTATO (34.34)
FRENCH GARLIC (53.79) BUTTER (50.38) WINE (50)
GERMAN ONION (66.79) PEPPER (40.38) SALT (38.49)
GREEK GARLIC (70.19) OLIVE OIL (69.06) ONION (56.98)
INDIAN ONION (72.08) GARLIC (70.57) GINGER (62.26)
ITALIAN GARLIC (65.91) OLIVE OIL (47.73) PARMESAN CHEESE (45.83)
JAPANESE SOY SAUCE (73.58) RICE WINE (42 26) GINGER (39.25)
MEXICAN ONION (55.09) TORTILLA (49,06 ) GARLIC (45.66)
MORO CCAN ONION (75.85) GARLIC (66.79) OLIVE OLL (64.91)
SPANISH GARLIC (79.62) OLIVE OIL (75.09) ONION (67.17)
THAT GARLIC (66.67) FISH SAUCE (51.14) CHICKEN (50.76)
Tor 1 Tor 2 Tor 3
GLOBAL MOST COMMON GARLIC (35.39) ONION (31.15) OLIVE OIL (34.14)
Tor 1 Tor 2 Tor 3
GLOBAL LEAST COMMON | CHESHIRE CHEESE (0.03) TEQUILA (0.03) WATERMELON (0.03)

Table 1: Most commonly used ingredients by cuisines and most/least commonly used ingredients across all
cuisines. 23 ingredients had 0 occurrence in the training set and these were not considered for the least commonly
used ingredients herein displaved
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Figure 1: Boxplots showing the distribution of number of ingredients per recipe by cuisine, ordered by median.
Whiskers have length 1.5 times IQR (Interquartile Range). Red dotted lines are the Ist and 3rd Quartiles for the
entire dataset, red dashed line is the median for the entire dataset. As all values are integers, an outlier diamond
might represent multiple datapoints sharing a value.

The histogram in Figure shows the distribution of total occurrences per ingredient. The vast
majority of ingredients have a low frequency and may therefore map specific cuisines, whereas very
few are used in a large number of recipes.

3 Preprocessing & Dimensionality Reduction

Dimensionality reduction and feature extraction techniques were used on the training set as a pre-
processing level. The rationale behind such approaches is manifold: greater interpretability of models
developed at a second stage, shorter training times, enhanced generalization by reducing overfitting,
learning a manifold of lower dimension which data may live in, and data visualization.

31 Methods

Principal component analysis (PCA) was applied as a standard linear dimensionality reduction
technique on the training set. No scaling / mean normalization was required prior to PCA given the
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Figure 2: Histogram of the distribution of total occurrences per ingredient. Note that the y-axis is log-scaled so
that the bins with fewer ingredients are visible.

binary data. The cumulative explained variance thresholds of 50%, 70%, and 90% were attained upon
retention of the first 27, 63, and 174 (out of 709) principal components (as visualised in Appendix,

Autoencoders are two-part models that maps from the data space A’ to a latent space Z with an
encoder and back to the data space with a decoder. The parameters of both parts are optimised
to minimise the reconstruction error. This allows for learning to a representation of the data in an
unsupervised way, i.e. without using the class labels. Using linear models for the en- and decoder, an
autoencoder would be equivalent to PCA so instead we use a two-layer neural networks with Leaky
Rectified Linear Units (ReLU) as non-linearity for the encoder to allow for more powerful encoding
than in the PCA case. We constrain Z to have 32 dimensions and use the encoder to project our data
to this space after the autoencoder has been fit to the training data. Implementation details for custom
methods are in the appendix

Supervised Learned Embedding is another form of embedding but generated in a supervised
way, i.e. taking the class labels into account. Our goal is to learn a matrix W which projects our
data to a lower-dimensional space in a meaningful way. We achieve this by training W together
with a two-layer neural network with Leaky ReLUs to predict the corresponding class of a recipe
using gradient-based optimisation. By using a two-layer network, we do not constrain our lower-
dimensional representation to have a linear relation with the classes. This method should retain
information about individual ingredients only insofar as they are useful for predicting cuisine which
makes the representation potentially very useful for cuisine prediction but not for other down-stream
tasks.

TF-IDF stands for term frequency - inverse document frequency. This method allows us to represent
the ingredients as a matrix of rational numbers, based on their frequency of occurrence within the
recipe and within the entire data-set. This method is an improvement over the Bag-of-Words approach
since it not only tells the model whether an ingredient occurs within a recipe but also computes a
significance score for each ingredient with equation:

" (1) P N
tf(i,r) = —— and idf(i, N) = log ——

() = Sieqry 20d 1diGE, N) = log 7o
where NV is the total number of recipes, f,(7) is the frequency of ingredient in the recipe size(r) is the
total number of ingredients in the recipe, and df (i) is the number of recipes in which the ingredient
appears. TF-IDF is then computed: TF-IDF = tf(i,r) x idf(i, N). Essentially, this means that
ingredients common to many recipes should have lower significance than rare ones.

Word2Vec was a further pre-processing selected to explore [12]. This converts words into n-
dimensional vectors such that semantically similar words are close to each other. The python library
Gensim was used to implement this. The original data-set proved to be too small for Word2Vec to
learn any meaningful representations. Instead we re-trained a GloVe embeddings model pre-trained
on a much larger data-set with a vocabulary of 1.9 million uncased words [13]. Two-word ingredients
were separated and treated as individual words as some of the two-word ingredients such as "hoisin
sauce’ were not present in the GloVe model. We were then able to represent each of these new words
as vector in 300-dimensional space and these ingredient vectors were then averaged for each recipe
to produce the final data transformation in the form of a 3177x300 matrix.




3.2 Visualisation

To visualise the effects of different preprocessing and dimensionality reduction methods, we project
each representation of the data into a two-dimensional space using Uniform Manifold Approximation
and Projection (UMAP) [11]. The resulting projections can then be visualised as a scatter plots,
which is shown in Figure
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Figure 3: Two dimensional UMAP projections of the recipes in the training split of our data. Each subplot uses
a data that was preprocessed in a different way. Colours indicate the corresponding cuisine. We lack the space to
include an analysis of the robustness of the resulting projections (w.r.t. subsampling the data and re-running
stochastic dimensionality reduction methods). Thus, we decided to tune neither UMAP nor the dimensionality
reduction methods. No cherry-picking was done.

The projections reveal several things. Firstly, we can see that the cuisines (represented by point
colour) appear in recognisable clusters even in the original data. Based on this, we would expect that
our cuisine prediction models should achieve good separation as it indicates that the classes are quite
distinct. We can also see that some classes are more distinct than others as they form neat clusters.
For example, all plots show a cluster of Japanese, Chinese and Thai (Orange, Light-Blue, Brown,
respectively) that is separate from the rest, and Indian and Moroccan (Red, Purple) are close together.
Mexican (Lavender) recipes are quite distinct and most isolated in all plots except the Autoencoder
one. The supervised learned embedding was the only embedding that used the class labels by being
optimised for cuisine prediction, thus information about what makes the dishes of a given cuisine
different is not relevant, and as a result we get much tighter clusters than we do with other methods.
This means that distance based classifiers (e.g. k-Nearest-Neighbours) should do better when using
data that was preprocessed in this way but classifiers that can fit more complex decision boundaries
(e.g. RandomForest) might do better on data pre-processing that retains more information. Looking
at the UMAP plot for the supervised learned embedding also gives us some indication as to what we
might expect in terms of cuisine prediction performance, wherein we would expect that recipes that
lie in a cluster dominated by another cuisine will be very hard to correctly predict. Furthermore, our
cuisine classifiers will likely confuse cuisines whose clusters neighbour more often than those whose
clusters are far apart.

‘We can also see that there appears to be a cluster of outliers for the Thai dishes (plotted in brown)
which is recognisable in the plots for the original data, PCA and Autoencoder. Generally, these three
plots appear characteristically similar in terms of which cuisines are close together and which are
farther apart. This indicates that our transformations appear to capture most of the information even
though the original data had 709 dimensions whilst the PC scores had only 171 dimensions and the
latent autoencoder representations had only 32 dimensions. We also observe that the plots for tf-idf
and Word2Vec seem to have more global separation between cluster than the other representations,




except the supervised learned embedding. Interestingly, despite bringing in additional information by
being pre-trained on external data, the Word2Vec plot is quite similar to the remaining plots.

4 Task 1 - Cuisine Prediction

The goal of this task is use the ingredients of a given recipe to classify it as belonging to one of the
twelve cuisines in our dataset.

4.1 Classification Algorithms

We evaluate five different classification algorithms: Random Forest (RF), Logistic Regression
(Logit), k-Nearest-Neighbours (KNN), Support Vector Machine (SVM), and Deep & Cross Network
(DeepCrossNet).

Random Forest is an averaging ensemble of Decision Trees [3] and was selected as they usually
achieve excellent performance on tabular data and can learn complex, non-linear decision boundaries
while still generalising well to unseen data. Logistic Regression is a linear model that uses a
logistic function to model the probabilities of a binary outcome whose model coefficients are fit with
maximum likelihood estimation. To obtain a class probability rather than a label, we use the fraction
of k neighbours that belong to the given class [5]. They generally performs robustly in a wide range
of applications; however, without basis functions and feature engineering, it can only fit a linear
decision boundary in variable space and cannot account for interactions. KNN classifies based on the
class of a number of nearest neighbours and should be very sensitive to the representation of the data
and thus might highlight effective dimensionality reduction methods. A SVM separates classes with
a hyperplane in feature space while aiming to maximise the margin between classes. Using kernel
functions, SVMs can fit non-linear class boundaries [2]. SVM and Logit are extended to multi-class
classification in a “one-vs-rest” fashion. They are effective and popular classifiers, and although they
scale poorly to large datasets in terms of computational complexity. We wanted to include a neural
network as they might work well on the data at hand. We select DeepCrossNet which is a neural
network that uses crosslayers in parallel to standard feed-forward layers. Crosslayers take the
input to the network zy and calculate z,, 41 = zox;, wy + by + ., where z,, is the output of the n-th
crosslayer with weights w,, and biases b,,, respectively. We can calculate (n + 1)-th degree feature
interactions by stacking n crosslayers. The output of both the crosslayers and the feed-forward layers
are then concatenated and used as the input to the output layer. The whole model can then be trained
with gradient-based optimisation. Additionally, we implement a simple Baseline Classifier which
computes per class column-wise means across all training samples. To predict the cuisine of a new
recipe, we simply take the distance between the recipe and the mean of each class. We then predict
the cuisine with the smallest distance (we consider cosine, euclidean and Manhattan distances), or to
obtain class probabilities, we take the softmax of negative distances.

4.2 Metrics

Our EDA has shown that the class distribution of the dataset is perfectly balanced, thus using accuracy
is generally appropriate in this case. Although, for classification models that yield class probabilities
rather than labels as predictions, this would require a decision procedure to map the probabilities
to labels. In a perfectly balanced task such as ours, simply predicting the label that has the highest
predicted probability is an appropriate choice. However, this would limit the application of developed
tools to the inclusion of further data that may not be balanced.

To mitigate this, we use the Area Under the Receiver Operating Characteristic Curve (AUC-ROC).
The advantage of this metric is that it does not depend on the choice of decision threshold. It also has
an intuitive interpretation: given a randomly selected case from the positive and negative class each,
the AUC-ROC approximates the chance that our classifier has scored the positive case higher than
the negative case. The AUC-ROC is a metric for binary problems which we extend to our multiclass
setting in a “one-vs-rest” fashion, meaning that we compute the AUC-ROC for each one versus rest
problem (e.g. Thai versus non-Thai), and then average these values.

4.3 Methods

The data was split into a cross-validation and holdout dataset in a 75:25 ratio. We consider five
different representations of our data and six classification algorithms with six hyperparameter settings




each for optimisation (see Appendix@, All pre-processing was implemented as part of the the cross-
validation pipeline to prevent information leakage, with the transformations fitted on the training fold
only. As different representations of the data may impact the optimal hyperparameter settings we
conduct 5-fold CV grid search optimisation on each pair of pre-processing and classifier. This results
in 5 x 6 x 6 = 180 variations with 5 fits per variant for a total of 900 model fits. After optimising each
of these pairs we take the optimised models and evaluate their performance on the holdout data-set.
The performance during the initial cross validation can be used to estimate the overall generalisation
performance.

4.4 Results

Evaluation of each of the optimised pre-processing-classifier pairs was performed using the holdout
dataset to produce the AUC-ROC scores shown in Figurc The highest overall performance was
using TFIDF encoding in combination with SVC and Logistic Regression (AUC-ROC of 0.974
and 0.972 respectively), although interestingly the KNeighbours Classifier also performs well after
hyperparameter optimisation, achieving the third highest AUC-ROC (0.967). The baseline classifier is
the lowest performing classifier for every pre-processing suggesting that the classifiers are successfully
leaming features from the data. We find that TFIDF encoding is consistently a strong form of data pre-
processing, offering the highest performance on all but one classifier (Random Forests). Word2vec
and the autoencoder display the worst performance of the pre-processings with AUC-ROCs worse
than the original sparse matrix for almost all classifiers.

Hyperparameter optimisation yielded a mild mean improvement in the performance of the classifiers
with +1.690% AUC-ROC and +4.240% accuracy. The optimal hyper-parameters we found are shown
in Appendix Of note KNN had the largest improvement with tuning, as the classifier performance
improved significantly with a higher numbers of neighbours. The cross-validation optimisation
displayed reliability across the classifiers as shown in Appendixwilh box plots of the AUC-ROC
scores achieved.
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Figure 4: Model performance (one-vs-rest AUC-ROC) on holdout test data per classification algorithm
(subplots) per data representation (columns). Grey dashed line indicates baseline classifier performance on
original data for comparison. Note that the y-axis range is from 0.9 to 0.98 (rounded mini- and maximum values)
to allow easier comparison of the methods. However, all results reflect decent separation of classes (AUC-ROC
>0.9).

4.5 Discussion

The significant uplift in AUC-ROC when using TFIDF validates its standard use in bag-of-words
datasets. The presence of very common ingredients that are not providing useful information for
classification and the impact of these ingredients on the classifiers is minimised by the inverse
document frequency scaling of TFIDF. We saw examples of such ingredients in EDA - for example,
onion and garlic occurred in 30-40% of recipes for most cuisines, and the importance of these will be
greatly reduced by TFIDE However, PCA will achieve a similar effect on the input data but does
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not see the same improvement in performance. This suggests that TFIDF is also improving the
results as it allows the less common ingredients, which are likely more unique to specific cuisines,
have a greater influence on the classification. There is potential for further processing of the TFIDF
transformations - for example, PCA or SLE could be used. However, given the already large number
of combinations, sequential pre-processing was outwith the scope of this project.

The poor performance of Word2vec may indicate that splitting 2 word ingredients removed some
information from the dataset. This could have been avoided by using is a larger dataset to allow
for direct Word2Vec representations without pre-training and this may have improved performance.
Supervised learned embedding outperformed the original data for the baseline classifier and the KNN
classifier where distances are used directly. This is expected given the results seen from the SLE
UMAP plol

5 Supplementary Task - Recipe Completion

5.1 Methods

We used the Surprise Python scikit library to explore recipe completion and ingredient rec-
ommendation with collaborative filtering. This library implements various collaborative filtering
methods, which can be broadly classified into memory-based methods, such as K-Nearest-Neighbor
based methods, and model-based methods, such as SVD-based matrix factorization. They can be
further subdivided into user-based and item-based collaborative filtering. Here we use it to explore
K-Nearest-Neighbor item-based collaborative filtering.

We removed ingredients that appeared in fewer than 6 recipes from the dataset as they contain
negligible information. The data was then reshaped to a long and skinny matrix with three columns
containing: user ids (recipe index), items (ingredients), and ratings (1 if ingredient appears in recipe,
0 otherwise). In effect, this transformation represents each recipe as a user who has rated a number of
ingredients as either present or absent. This dataset was used to cross-validate multiple KNN models,
varying the similarity metric used between pairs of ingredients (Pearson Correlation Coefficient,
Mean Squared Difference, Cosine Similarity) and computing their precisions and recalls for the top
20 predicted ingredients above a threshold value. From this search, it was concluded that the Pearson
correlation coefficient similarity measure achieved the highest performance. A similar search was also
performed on the models using the Pearson correlation coefficient and mean-squared-error as a loss
metric. Here, the maximum number of neighbours, k, was set to either 40 or 100. The performances
were compared to a naive model, which randomly predicted whether the ingredient appeared in
a recipe based on an assumed normal distribution of the dataset. The highest performing model,
KNNWithZScore was selected. Next, this model was trained on the full dataset using the optimal
parameters found by the searches. However, it was only able to predict how likely an ingredient was
to appear in a given recipe. As such, a function was needed to yield recipe completions given a list of
partial ingredients. This was accomplished via two different methods. The first method, when given a
list of ningredients, created a predictions matrix with the number of rows corresponding to the number
of recipes and the number of columns equal to the n partial ingredients provided i.e., it calculated the
likely-hood of each input ingredient appearing in each recipe. Then, the likely-hoods were summed
across recipes yielding a total score for each recipe. The indices of the highest scoring recipes were
found and cross-referenced with the recipes in the original dataset. The missing ingredients from
the found recipes were then printed. If no recipe containing all the input ingredients was found, the
unnecessary ingredients from the input list were also printed alongside the closest-matched recipes.
The second method used the same trained model, but instead of scoring all input ingredients against
all recipes, it recommended n missing ingredients by calculating the k nearest neighbors to each of the
ingredients given, and then finding the n most common ingredients among the neighbors excluding
the input ingredients. This method did not "cheat” by looking up the recipes, but instead, relied fully
on the KNN model to suggest essentially completely new recipes.

5.2 Results

The results of the 10-fold cross validation of various KNN algorithms with various similarity measures
yielded the mean precision and recall scores tabulated in Table these are compared to the baseline
performance of a naive predcitor and outperform it significantly. The results of the mean RMSEs with
maximum number of neighbors k=40 and k=100 for various KNN algorithms are also compared to the
naive predictor in Table From these searches, it was concluded that the best performing model was




the KNNwithMeans algorithm with a maximum k of 100, using the Pearson correlation coefficient to
compute similarities between pairs of ingredients with a mean precision of the 10-fold cross validation
of 0.283 and a mean recall of 0.308, and a mean RMSE of 0.141. With regards to the recommendation
engine, the first method always predicted the correct missing ingredients by memorising the dataset.
The second method suggested a user-specified n number of ingredients, which could go together with
the input ingredients. These two methods were packaged in a mini terminal app, which can be used
by anybody to recommend either real recipes (method 1) or completely new ones (method 2). The
completion engine can be run on Windows and Linux operating systems by following the instructions
in the ReadME.md file.

5.3 Discussion

Both the RMSE values and the mean precisions and recalls were much higher for all the KNN-based
models than for the Normal Predictor baseline model. The Evaluation of recipe completion model
1s more complex than evaluating a classifier. Consider that if we obtain a test sample by taking a
recipe from our dataset and removing an ingredient, there are, in principle, many sensible ways of
completing it. For example, if we remove the protein from a given recipe, many different cuts of meat
from different animals - or a vegetarian alternative - could complete the recipe. Thus, a model might
complete the recipe differently, yet correctly.

Algorithm RMSE (k =40) RMSE (k=100)
Maive Predictor 0.19703 0.19706
KNN Baseline 014408 014507
KNN Basic 015528 0.15727
KNN with Means 0.14405 0. 14503
KNN withZ-Score | 0.14018 0.14146

Table 2: Table showing the mean RMSEs of 10-fold cross validation for various KNN collaborative filtering
algorithms using the Pearson correlation coefficient as as similarity measure between pairs of items.

Similarity Method Similarity Method

Mean Precisions Mean Recalls !
Cosine  MSD  Pearson Cosine  MSD  Pearson
Naive Predictor 00267 00262 00268 Naive Predictor 00921 00908  0.0268
KNN Baseline 02364 02155 02651 KNN Baseline 03067 01918 03147
Algorithm  KNN Basic 01393 00244 0139 Algorithm  KNN Basic 02007 00151 01586
KNN with Means | 0.2362 02159 02648 KNN with Means | 0.3055  0.1931 03131
KNN with Z-Score | 0.2617 02155 0.2832 KNN with Z-Score | 02906  0.2035  0.307%
(a) (b}

Figure 5: A table showing the mean precisions and recalls for the various KNN collaborative filtering algorithms
using various similarity measures to compute similarities between ingredients.

6 Conclusions

Cuisine Prediction: For this classification task we achieved consistent high performance with SVM
and logistic regression classifiers are expected for sparse data with reasonable class separation and
clustering as seen in the UMAPs shown in Figure The use of TFIDF was validated as the best pre-
processing across classifiers for improving performance in this bag-of-words dataset. Combined we
achieve AUC-ROCs of 0.974 and 0.972 for TFIDF transformation with SVC and Logistic Regression
respectively.

Recipe Completion: The prediction engine is functional and outperforms the naive predictor baseline.
Qualitatively, the ingredients suggested by the model seem sensible (see Appendix: , However,
more data would likely improve performance and the quantitative results are complicated by the fact
that the dataset contains recipes, which represent only a small slice of the culinary universe so even
a sensible completion might not appear in the data and could be scored as incorrect. Developing
methods of evaluation would be a critical next step here.




References
[1] Facundo Belloni. Machine learning for cuisine discovery. UoE, 2012.

[2] Bemhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning
theory, pages 144-152, 1992.

[3] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[4] Rishikesh Ghewari and Sunil Raiyani. Predicting cuisine from ingredients. University of
California San Diego, 2015.

[5] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media, 2009.

[6] Nicolas Hug. Surprise, a Python library for recommender systems. http://surpriselib
com 2017.

[7] Shobhna Jayaraman, Tanupriya Choudhury, and Praveen Kumar. Analysis of classification
models based on cuisine prediction using machine learning. In 2017 International Conference
On Smart Technologies For Smart Nation (SmartTechCon), pages 1485-1490. IEEE, 2017.

[8] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification, 2016.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[10] RM Rahul Venkatesh Kumar, M Anand Kumar, and KP Soman. Cuisine prediction based on
ingredients using tree boosting algorithms. Indian Journal of Science and Technology, 9(45):12,
2016.

[11] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction, 2020.

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word
Representations in Vector Space. arXiv:1301.3781 [cs], September 2013. URL http://arxiv|
org/abs/1301.3781 arXiv: 1301.3781.

[13] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532-1543, 2014.

[14] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click
predictions. In Proceedings of the ADKDD'17, pages 1-7. 2017.

[15] Yummly. Understanding cuisines using a new dataset from yummly. URL https://www
yummly .com/insights/understanding-cuisines




Appendices

A Training Set at a Glance

CUISINE NO. RECIPES No. INGREDIENTS IN A RECIPE
e PER CUISINE R e

MEAN  MEDIAN STD  MAD IQR

CHINESE 265 11.49 12 320 259 40
ENGLISH 265 9.28 9 326 260 40
FRENCH 264 10.53 10 367 295 5.0
GERMAN 265 9.68 9 361 295 5.0
GREEK 265 10.83 10 361 284 50
INDIAN 265 12.88 13 320 255 40
ITALIAN 264 10.58 10 381 301 5.0
JAPANESE 265 9.13 9 325 260 40
MEXICAN 265 10.23 10 344 269 40
MOROCCAN 265 13.16 13 3.55 284 40
SPANISH 265 11.10 11 360 288 6.0
THAI 264 11.80 11 374 3.02 50

Remark on figure |1{ Using Tukey’s fences (at 1.5x IQR), only few data points may be regarded
as outliers. We inspected the most extreme case which is relative to the Thai cuisine and which
also happens to be the only recipe under this cuisine to lie further than 1.5x IQR. Here is the list
of ingredients for this data point: Broth, Carrot, Chicken, "Chili Oil", Coconut, "Coconut Milk Or
Cream’, Coriander, Cornstarch, Cumin, Garlic, Ginger, *Green Onion’, Lime, Mace, Onion, Paprika,
Parsley, Pea, Peanut, "Peanut Butter’, Pepper, Rice, "Rice Vinegar’, Salt, Shrimp, "Soy Sauce’, Sugar,
Turmeric, *Vegetable Oil’, Water, Zucchini. Upon a closer look, this does seem a data error.

B Implementation details

All Leaky ReLUs use a negative slope of 0.01.

Autoencoder: The autoencoder is trained with a batch size of 128 for 150 epochs with the Adam
optimizer using a learning rate of 0.0001, reduced by half after 50 epochs minimising the
element-wise binary crossentropy loss between reconstructed and actual recipe. The output is softmax
activated - this means that the recipe cannot be perfectly reconstructed as the model can only allocate
a mass of 1 for its output. However, it also ensures that the model allocate s sufficient mass. Using
element-wise sigmoid activations would be more intuitive but as most recipes do not have a particular
ingredient this leads to the model diverging and predicting 0 for all ingredients. We also use one-sided
label-smoothing to change target values to (.95 instead of ones. The hidden layer of the encoder has
64 hidden units, the latent space 32 units.

Supervised Learned Embeddings: The network for this method has the embedding layer projecting
the input data to a 32-dimensional space, followed by a hidden layer with 64 units, followed by the
output layer. It also uses Leaky ReLUs with a batch size of 128 for 150 epochs and has a softmax
activation for the class predictions. It is trained to minimise the crossentropy loss using Adam with
Ir=0.0005, which is halved after 50 epochs.

Deep cross net: The input to the network is optionally rescaled column-wise to the interval [-1,1].
The model uses a weight decay of le-5 for regularisation. The model consists of a two hidden-layer
neural net with 16 hidden units with Leaky ReLU activations in parallel to the cross layers (which are
a hyperparameter). The outputs of both are then concatenated and a output layer maps them to the
class space with a softmax activation. It is also trained with Adam(Ir=0.00005) for 35 epochs.
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C Cumulative Explained Variances of PCA compared to fraction of 1s per
top ingredients
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D Available Hyper-parameters

Classifier | Parameters [Options]

kNN n Neighbours [25, 50, 100] Weights [uniform, distance]
SVM Kernel [poly, rbf] Reg Strength [0.2, 1.0, 5.0]
RF Max Depth [None, 6, 12] Max Features [sqrt, 1.0]
Logit Penalty [11, 12] Reg Strength [0.2, 1.0, 5.0]
DCN Number of Epochs [50, 100, 250]  Scaling [True, False]

E Optimal Hyper-parameters

kNN SVM RF Logit DCN
0G n_neighbors=50, weights="distance’ - max_features="sqrt’ - n_epochs=50, scaling=False
PCA n_neighbors=50, weights="distance’ - max_depth=12, max_features="sqrt’ =02 n_epochs=100, scaling=False
SLE | n_neighbors=100, weights="distance’ - max_depth=6, max_features="sqrt” | penalty="11" n_epochs=250
TF n_neighbors=50, weights="distance’ - max_features=sqrt’ - n_epochs=50, scaling=False
wlv n_neighbors=50, weights="distance” | C=5.0 max_features="sqrt’ C=5.0 n_epochs=50
AE n_neighbors=50 C=5.0 | max_depth=12, max_fe “sgrt” =50 n_epochs=250
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F Cross Validation Performance

Baseline k-Mearest Neighbors Support Vector Machine
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Figure 6: Boxplots of ROC AUC cross-validation scores. Reported values of one-vs-rest ROC AUC.
Whiskers indicate maximum and minimums. Grey line indicates median. Mean is shown above
each boxplot. OG - Original Data, PCA - Principal Component Analysis, SLE - Supervised Learned
Encoding, TF - TFIDF Encoding, w2v - word2vec Encoding, AE - AutoEncoder.

G Additional Ideas for Recipe Completion

These are further ideas that we didn’t implement due to lack of time.

Frame it as a classification problem: for a sample of the training data, remove an ingredient from the
recipe which is the target and use the stub as the input. We can also remove more than one ingredient
and have a target vector with excess probability mass to obtain more data and learn more robust
completions

A complication with this approach is that there are 709 ingredients which would be our target classes.
If we tried, for example, to use logistic regression for this problem, we would end up fitting over half
a million parameters. Neural networks are much more efficient in this case as they can learn a lower
dimensional projection first. We consider a DeepCrossNet with a learned input embedding matrix.

Furthermore, we consider an interesting variation of this model. Instead of having an 1,4 cdients-
dimensional output, we obtain an output of the same dimension as our lower dimensional learned
embedding. We then use the inverse of the embedding matrix to project the output of the neural
network to ingredient space. The core idea is that the embedding matrix should in a meaningful way
capture the similarity of ingredients, which is useful for both the initial dimensionality reduction
and for mapping back to the ingredients. A complication is that the embedding matrix might not be
invertible, but there might be tricks around that?

Another way of framing the problem is the use an autoencoder. We can train it with full recipes and
stubs, yet ask for the original, full recipe as the output in both cases. For a evaluations stubs, the
reconstruction should then yield a distribution over possible completions.

Finally, we use truncated SVD to learn a projection of our training data and evaluation stubs jointly.
Project and reconstruct stub recipes to get a distribution over ingredients that could complete the
recipe (ignoring those that are already part of the recipe). We can also add construct stubs from the
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training data to increase the size of the dataset we fit the truncated SVD to. We can then project and
recover a stub recipe to get a distribution over possible completions.

we take an approach similar to the Netflix price solution

{https://mlpr.inf.ed.ac.uk/2020/motes/w9b_netflix_prize.html| The dataset is decomposed into
a tall-and-skinny and a short-and-fat matrix. This is similar to SVD yet the singular values are
“consumed” by our two matrices. However, whereas the Netflix price dataset contained user ratings
per movie ranging from one to five, we have binary information about whether a recipe contains a
specific ingredient. And while the challenge in the Netflix

As a baseline, we predict the most common ingredients for a given cuisine that are not part of the
recipe already, using statistics from the training data.

G.1 Metrics

Evaluation of recipe completion model is more complex than evaluating a classifier. Consider that if
we obtain a test sample by taking a recipe from out dataset and removing an ingredient, there are,
in principle, many sensible ways of completing it. For example, if we remove the protein from a
given recipe, many different cuts of meat from different animals - or a vegetarian alternative - could
complete the recipe. Thus, a model might complete the recipe differently, yet correctly.

We try to remedy this in two ways: First, our models yield a probability distribution over possible
completions. Thus, instead of considering only one, we take the top-k completions. Secondly, to
account for other sensible completions, we search the entire current evaluation dataset and the training
dataset. If a stub recipe occurs in the training data, it is not undesirable for a model to complete it as it
was in the training data. Still, we also report the performance on the current evaluation dataset alone
to give the reader an idea of how important memorisation was to the performance of a given model.
To allow for this second adjustment, we use accuracy rather than a ranking metric like AUC-PR.

Still, the dataset is quite small compared to the wealth of cultural diversity in the culinary world.

H Recommender

Welcome to the Ingredient Recommendation Engine

Please put in all your ingredients separated by commas: lamb, pea, beef stock, carrot
Would you like to use lookup? (yes/no): n

Please put in the number of recommendations you would like to get : 3

To complete these ingredients: [?lamb?, ‘pea’, ’beef stock’, ‘carrot?’], we suggest the following
[>onion’, ’potato’, ’pearl onion’]

Enjoy!

Would you like to try again? (yes/no): yes

Please put in all your ingredients separated by commas: soy sauce, prawn, chile pepper, miso
Would you like to use lookup? (yes/no): n

Please put in the number of recommendations you would like to get : 3

To complete these ingredients: [’soy sauce’, ’prawn’, ’chile pepper’, ’miso’], we suggest the fo:
[*sesame 0il’, ’rice wine’, ’ginger’]

Enjoy!




Would you like to try again? (yes/no): yes

Please put in all your ingredients separated by commas: duck,garlic,ginger, honey,pepper,salt
Would you like to use lookup? (yes/no): yes

To complete these ingredients: [’duck’, ’garlic’, ’ginger’, ’honey’, ’pepper’, ’salt’], we sugge:

[’soy sauce’, ’sugar’]
These ingredients come from a Chinese recipe. Enjoy!




