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What is a service-level agreement?

� A contract between service provider and client.

� May involve availability:

� Service has > 99% availability.

� May involve response time:

� 97% of requests receive a response within 3 seconds.

� May be a combination of several statements such as these.
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What is service-oriented computing?

� A modern approach to distributed computing.

� Applications are built by composing services.

� Services are replicated across a number of servers.

� Providers publish services in registries.

� Users discover services and bind to them.
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Uncertainties in service-oriented computing

� We do not know which service instances will be used.

� The service instances have different performance characteristics.

� The service instances may have different functionality.

� Plus all of the usual problems of distributed systems. . .

. . . lots of difficulties for modellers!
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Analysis of service-oriented computing

� Put all possible descriptions of service behaviours together in
one big model.

� Hope your favourite large state-space method can cope ...
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Analysis of service-oriented computing

� Separate out service bindings into different cases. Analyse cases
separately. Re-combine results.

� ... Scalable analysis of scalable systems.
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What we need, and what we need to do

� A way of specifying the behaviour of interest.

� Model using a process calculus.

� Generate the underlying labelled transition system.

� A way of specifying uncertainty about durations.

� Use exponential distributions.

� Numerically evaluate a Markov chain.

� A way of specifying uncertainty about rate parameters.

� r = {0.1, 0.3, 0.5, 0.7}

� Perform parameter sweep across all values.

� A way of specifying uncertainty about bindings.

� Server = {UEDIN::Server,UNIPI::Server}

� Analyse all possible configurations by cases.
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Languages and tools

� SRMC (Sensoria Reference Markovian Calculus)

� Use srmc (Sensoria Reference Markovian Compiler) to compile to
PEPA

� PEPA (Performance Evaluation Process Algebra)

� Use ipc (International PEPA Compiler) to compile to Hydra

� Hydra (Markovian response-time analyser)

� Use hydra to compute response-time quantiles
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Evaluation model
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Continuous-Time Markov Chains

We work with a stochastic process algebra (PEPA) which has
Continuous-Time Markov Chains (CTMCs) as the underlying
mathematical model.

Markov chains

Markov chains are finite state stochastic processes. The transition
system of a Markov chain can be stored as a generator matrix, Q,
constructed such that when we find a transition from state i to
state j at rate r we add r to the current value of Qij .
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Steady-state analysis

Investigation of SLAs may require steady-state analysis of a CTMC.

Steady-state analysis

We are concerned with finding the state probability row vector
π = [π1, . . . , πn] where πi denotes the stationary probability that the
CTMC is in state i .
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Computing the stationary distribution

The stationary distribution can be computed using procedures of
numerical linear algebra.

Global balance equation

πQ = 0

Normalisation condition∑
π = 1
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Modelling with quantified process algebras

Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

This example defines a system with nine reachable states:

1. P1 ‖ P1

2. P1 ‖ P2

3. P1 ‖ P3

4. P2 ‖ P1

5. P2 ‖ P2

6. P2 ‖ P3

7. P3 ‖ P1

8. P3 ‖ P2

9. P3 ‖ P3

The global balance equations and the normalisation condition en-
sure there is a unique stationary distribution over these states.
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Modelling with quantified process algebras

Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

The stationary distribution over the nine reachable states is:

1. 0.1111

2. 0.1111

3. 0.1111

4. 0.1111

5. 0.1111

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111

(Each state has two outgoing transitions with rate r so none of
them is more likely than the others.)
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Transient analysis

Investigation of SLAs often requires the transient analysis of a
CTMC.

Transient analysis

We are concerned with finding the transient state probability row
vector π(t) = [π1(t), . . . , πn(t)] where πi (t) denotes the probability
that the CTMC is in state i at time t.
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Analysis based on Continuous-time Markov
Chains

Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 0:

1. 1.0000

2. 0.0000

3. 0.0000

4. 0.0000

5. 0.0000

6. 0.0000

7. 0.0000

8. 0.0000

9. 0.0000
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Analysis based on Continuous-time Markov
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Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 1:

1. 0.1642

2. 0.1567

3. 0.0842

4. 0.1567

5. 0.1496

6. 0.0804

7. 0.0842

8. 0.0804

9. 0.0432
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Analysis based on Continuous-time Markov
Chains

Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 2:

1. 0.1056

2. 0.1159

3. 0.1034

4. 0.1159

5. 0.1272

6. 0.1135

7. 0.1034

8. 0.1135

9. 0.1012
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Analysis based on Continuous-time Markov
Chains

Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 3:

1. 0.1082

2. 0.1106

3. 0.1100

4. 0.1106

5. 0.1132

6. 0.1125

7. 0.1100

8. 0.1125

9. 0.1119
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Analysis based on Continuous-time Markov
Chains

Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 4:

1. 0.1106

2. 0.1108

3. 0.1111

4. 0.1108

5. 0.1110

6. 0.1113

7. 0.1111

8. 0.1113

9. 0.1116
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Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 5:
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3. 0.1111

4. 0.1110

5. 0.1110

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111
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Tiny example
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Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 6:

1. 0.1111

2. 0.1111

3. 0.1111

4. 0.1111
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7. 0.1111

8. 0.1111

9. 0.1111
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Analysis based on Continuous-time Markov
Chains

Tiny example

P1 = (start, r).P2 P2 = (run, r).P3 P3 = (stop, r).P1
System = (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 7:

1. 0.1111

2. 0.1111

3. 0.1111

4. 0.1111

5. 0.1111

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111
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Uniformisation

Transient and passage-time analysis of CTMCs proceeds by a
numerical procedure called uniformisation.

Uniformisation

The generator matrix, Q, is “uniformised” with:

P = Q/q + I

where q > maxi |Qii |. This process transforms a CTMC into one in
which all states have the same mean holding time 1/q.
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Uniformisation

22 / 91



www.sensoria-ist.eu

Passage-time computation

Passage-time computation is concerned with knowing the probability
of reaching a designated target state from a designated source state.
It rests on two key sub-computations.

1. Finding the time to complete n hops (n = 1, 2, 3, . . .), which is
an Erlang distribution with parameters n and q.

2. Finding the probability that the transition between source and
target states occurs in exactly n hops.
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A Virtual University

The Sensoria Virtual University (SVU) is a (fictitious) virtual
organisation formed by bringing together the resources of the
universities at Edinburgh (UEDIN), Munich (LMU), Bologna
(UNIBO), Pisa (UNIPI) and others.

The SVU federates the teaching and assessment capabilities of the
universities allowing students to enrol in courses irrespective of where
they are delivered geographically.
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The Sensoria Virtual University
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The Sensoria Virtual University
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Content upload and download

Students download learning objects from the content download
portals of the universities involved and upload archives of their
project work for assessment. By agreement within the SVU, students
may download from (or upload to) the portals at any of the SVU
sites, not just the one which is geographically closest.
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What we leave out

It is likely that the students make a conscious decision about which
portal to bind to. However, we do not anticipate having any data
about how the students make their choice so we will not include in
our model any representation of the reasoning process leading to
selection of one portal or another.
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SRMC description of the UEDIN server

UEDIN::{
lambda = 1.65; mu = 0.0275; gamma = 0.125; delta = 3.215;
avail = { 0.6, 0.7, 0.8, 0.9, 1.0 };

UploadPortal::{
Idle = (upload, avail * lambda).Idle + (fail, mu).Down;
Down = (repair, gamma).Idle;

}

DownloadPortal::{
Idle = (download, avail * delta).Idle + (fail, mu).Down;
Down = (repair, gamma).Idle;

}
}
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SRMC description of the LMU server

LMU::{
lambda = 0.965; delta = 2.576;
avail = { 0.5, 0.6, 0.7, 0.8, 0.9 };

UploadPortal::{
Idle = (upload, avail * lambda).Idle;

}

DownloadPortal::{
Idle = (download, avail * delta).Idle;

}
}
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SRMC description of the UNIBO server

UNIBO::{
lambda = 1.65; mu = 0.0275; gamma = 0.125; delta = 3.215;
slambda = 1.25; sdelta = 2.255; avail = { 0.8, 0.9, 1.0 };

UploadPortal::{
Idle = (upload, avail * lambda).Idle + (fail, mu).Down

+ (supload, avail * slambda).Idle;
Down = (repair, gamma).Idle;

}

DownloadPortal::{
Idle = (download, avail * delta).Idle + (fail, mu).Down

+ (sdownload, avail * sdelta).Idle;
Down = (repair, gamma).Idle;

}
}
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SRMC description of a cautious client

Sally::{
Idle = (start, 1.0).Download;
Download = (download, _).(download, _).(download, _).Upload

+ (sdownload, _).(sdownload, _).(sdownload, _).Upload;
Upload = (upload, _).(upload, _).Disconnect

+ (supload, _).(supload, _).Disconnect;
Disconnect = (finish, 1.0).Idle;

}
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SRMC description of an incautious client

Harry::{
Idle = (start, 1.0).Download;
Download = (download, _).(download, _).(download, _).Upload;

Upload = (upload, _).(upload, _).Disconnect;

Disconnect = (finish, 1.0).Idle;
}
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Client, Upload and Download portals

SVU::Client =
{ Harry::Idle, Sally::Idle };

SVU::UploadPortal =
{ UEDIN::UploadPortal::Idle, LMU::UploadPortal::Idle,

UNIBO::UploadPortal::Idle, UNIPI::UploadPortal::Idle };

SVU::DownloadPortal =
{ UEDIN::DownloadPortal::Idle, LMU::DownloadPortal::Idle,
UNIBO::DownloadPortal::Idle, UNIPI::DownloadPortal::Idle };
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Probability Distribution Function [Harry,
LMU, LMU]
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Cumulative Distribution Function [Harry,
LMU, LMU]
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PDF [Harry, UEDIN, LMU],
(LMU::avail=0.5)
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PDF [Harry, UEDIN, LMU],
(LMU::avail=0.6)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Main::UEDIN::avail
Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Pd

A pdf Sensitivity graph

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0

 5

 10

 15

 20

 25

 30

Pd

39 / 91



www.sensoria-ist.eu

PDF [Harry, UEDIN, LMU],
(LMU::avail=0.7)
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PDF [Harry, UEDIN, LMU],
(LMU::avail=0.8)
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PDF [Harry, UEDIN, LMU],
(LMU::avail=0.9)
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CDF [Harry, UEDIN, LMU],
(LMU::avail=0.5)
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CDF [Harry, UEDIN, LMU],
(LMU::avail=0.6)
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CDF [Harry, UEDIN, LMU],
(LMU::avail=0.7)
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CDF [Harry, UEDIN, LMU],
(LMU::avail=0.8)
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CDF [Harry, UEDIN, LMU],
(LMU::avail=0.9)
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Service-level agreements for SOC

The type of service-level argeement which we would attempt to state
for service-oriented computing systems would include a confidence
interval, a path through the system, a time bound and lower and
upper probability bounds.

For example: “Ninety percent of sessions will complete within 29
minutes with probability between 93.9% and 99.3%”.
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Candlestick 10% to 90%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

P
ro

ba
bi

lit
y

Time

A candlestick graph

49 / 91



www.sensoria-ist.eu

Probability of completion at t = 1.0
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Probability of completion at t = 1.5
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Probability of completion at t = 2.0
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Probability of completion at t = 2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

P
ro

ba
bi

lit
y

Instance Number

A probability at time graph time = 2.5

53 / 91



www.sensoria-ist.eu

Probability of completion at t = 3.0
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Probability of completion at t = 3.5
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Probability of completion at t = 4.0
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Probability of completion at t = 4.5
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Probability of completion at t = 5.0
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Probability of completion at t = 5.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

P
ro

ba
bi

lit
y

Instance Number

A probability at time graph time = 5.5

59 / 91



www.sensoria-ist.eu

Probability of completion at t = 6.0
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Probability of completion at t = 7.0
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Probability of completion at t = 8.0
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Probability of completion at t = 9.0
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Probability of completion at t = 10.0
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Probability of completion at t = 11.0
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Probability of completion at t = 12.0
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Probability of completion at t = 13.0
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Probability of completion at t = 14.0
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Probability of completion at t = 15.0
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Probability of completion at t = 16.0
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Probability of completion at t = 17.0
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Probability of completion at t = 18.0
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Probability of completion at t = 19.0
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Probability of completion at t = 20.0
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Probability of completion at t = 21.0
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Probability of completion at t = 22.0
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Probability of completion at t = 23.0
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Probability of completion at t = 24.0
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Probability of completion at t = 25.0
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Probability of completion at t = 26.0
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Probability of completion at t = 27.0
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Probability of completion at t = 28.0
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Probability of completion at t = 29.0
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Probability of completion at t = 30.0
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Discussion

� We might wonder if our infrastructure is necessary. Do we need
to generate separate configurations and recombine the results?

� To test this we compared our SRMC model against a plain
CTMC model of the system generated from a Generalised
Stochastic Petri Net with vanishing markings.
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Experiments with increasing model size

# Client Upload Portal Download Portal
1 {Harry} {UEDIN} {UEDIN}
2 {Harry} {UEDIN, LMU} {UEDIN}
3 {Harry} {UEDIN, LMU} {UEDIN, LMU}
4 {Harry} {UEDIN, LMU, UNIBO} {UEDIN, LMU}
5 {Harry} {UEDIN, LMU, UNIBO} {UEDIN, LMU, UNIBO}
6 {Harry} {UEDIN, LMU, UNIBO, UNIPI} {UEDIN, LMU, UNIBO}
7 {Harry} {UEDIN, LMU, UNIBO, UNIPI} {UEDIN, LMU, UNIBO, UNIPI}
8 {Harry, Sally} {UEDIN, LMU, UNIBO, UNIPI} {UEDIN, LMU, UNIBO, UNIPI}
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Experiments with increasing model size

CTMC SRMC
Num. Num. Num. time Num. Num. Num. time

# states config runs (secs) states config runs (secs)
1 32 1 5 0.5 32 1 5 0.5
2 48 1 25 3.7 32 2 30 2.4
3 72 1 25 6.7 32 4 60 3.5
4 120 1 75 65.0 32 6 90 6.2
5 200 1 75 280.0 32 9 123 9.7
6 280 1 225 2280.0 32 12 162 13.5
7 392 1 225 7390.0 32 16 204 18.2
8 784 1 225 ∼ 134100.0 32 32 408 54.0
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Experiments with increasing model size
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Conclusions

� We addressed the inherent uncertainty in service-oriented
computing by analysing by cases. We perform parameter sweep
for each case. We can evaluate these in parallel (using Condor).

� The analysis methods scale well with increasing problem size.

� We build on tried and trusted compilers and analysers.

� Hopefully a “real world” approach to a “real world” problem.
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Thank you!
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