DEVELOPING HIGH ASSURANCE SYSTEMS:
ON THE ROLE OF SOFTWARE TOOLS

CONNIE HEITMEYER

CENTER FOR HIGH ASSURANCE COMPUTER SYSTEMS
NAVAL RESEARCH LABORATORY
WASHINGTON, DC

22nd International Conference on

Computer Safety, Reliability, and Security
SAFECOMP 2003

OUTLINE

* |ntroduction

* Background
— Overview of SCR requirements method
— SCR Tools
* Applying tools in the development of high assurance
systems
— A-7 Operational Flight Program (U.S. Navy)
— Rockwell’s Flight Guidance System
— U.S. Navy’'s Weapon Control Panel
— NASA's Flight Protection Engine
— U.S. Navy Family of Cryptographic Devices

* Problems tools cannot solve
e Summary and Conclusions

9/24/03

WHAT ARE
HIGH ASSURANCE SYSTEMS?

HIGH ASSURANCE COMPUTER
SYSTEM

computer system where compelling evidence is required that
the system delivers its services in a manner that satisfies certain
critical properties*

CLASSES OF HIGH

ASSURANCE SYSTEMS

m REAL-TIME g SURVIVABLE QFAULT-TOLERANT m

Prevents Delivers Continues to Guarantees a certain Prevents
unauthorized results fulfill its quality of service uni ntended
disclosure, within mission in the despite faults, such events that

modification, Spf’.cmed presence of e orkong . FEsUItin

- : ime attacks, ardware, workload, .
and Wlthh.o.ldl 9 intervals accidents or or environmental de.ath’ Injury,

.Of Sens't!ve failures anomalies IlIness, or
Information damage to

9/24/03 *Heitmeyer and Rushby, Workshop on High Assurance Systems, 1995. property

MATHEMATICSVS.
ENGINEERING

MATHEMATICAL
RESOURCES
(e.g., theories, models,
and algorithms)

Logics (predicate, 1st order,
higher order, etc.)
Automata models

-

Theories underlying decision

procedures

MATHEMATICALLY
WELL-FOUNDED
SOFTWARE
ENGINEERING
DISCIPLINE

Methods
L anguages
Tools
Technology

OUR LONG-TERM GOAL

9/24/03

(Semi-)Automatic Transformation
of a Specification into a
Provably Correct, Efficient Program

®* Three maor problems in software development
— High cost of developing software
— Lengthy software development times
— Software errors
®* Tools can help reduce all three
— Can reduce software development costs

« Automating atask can dramatically reduce the cost of the task

— In many cases, can perform analysis much faster than
humans

« Often, atool can do atask in fractions of a seconds
 Doing the task manually can require orders of magnitude more time

— Can find errors humans miss

« Typically, human inspections overlook many errors
 For certain classes of errors, tools can find ALL of the errors

9/24/03

HISTORY OF
SCR APPROACH

0 1978: Heninger,Parnas+ publish A-7/SCR requirements document
— Tabular notation
— Events and conditions
— Mode classes and terms
0 1980s-early 1990s: SCR applied to a wide range of systems
— Telephone networks (AT&T Bell Labs)
— Submarine communications (NRL)
— Control software for nuclear plants (Ontario Hydro)
— Avionics software (Grumman)
0 Early 1990s: Development of Four Variable Model and CoRE
— Parnas+ introduce and apply Four Variable Model
— Softw. Productivity Consortium develops CoRE method(based on SCR)
— Lockheed applies CoRE and SCR tables to C-130J flight program

0 1992-present. NRL develops formal SCR model and tools

SCR ® Software Cost Reduction

9/24/03

SCR GOAL: MAKE ‘FORMAL
METHODS' PRACTICAL

SPECIFY

THE SYSTEM
PRECISELY

Use a TABULAR APPLY
notation with an

explicit formal

semantics to Automatically
specify the check spec for
required syntax/type errors,
behavior missing cases,

nondeterminism,
circular defs, etc.

' As we move down the chain, we
increase

assurance in the spec

9/24/03

* Usable, scalable tabular notation
* |Integrated set of robust, powerful software tools

— light-welght tools whose use does not
require math. sophistication/thm proving

— heavy-duty tools (e.g., theorem prover)

“CONSISTENCY
CHECKING”

SIMULATE
THE
SYSTEM

BEHAVIOR VERIFY

Symbolically SPECS USING

- ocute the | MODEL CHECKING ‘
system based Checl
on the P VERIFY

ey cal SPECS USING
(executable) — qpplication | THEOREM PROVING

req. Specs properties

SCR TOOLS FOR DEVELOPING
SOFTWARE REQUIREMENTS*

SCR ..
System
TOOLSET | SPECIFICATION DEPENDENCY |
| EDITOR Spec GRAPH BROWSER
® most mature tools
CONSISTENCY
® nstalled at 100+ SIMULATOR |-~ CHECKER
org’ns in mdustrjy \ ’
govt., and MODEL % A
academia | CHECKER | >« v - ==
NeW ... \\\\\ \A. Consi Stency and Compl Etene$
ANALYSIS TOO[_S | THEOREM PROVER '.‘ K . — Isthe spec well-formed?
.1 ®e Vaidation
e E — Isthistheright spec?
CHE&?I—?IE Igz:(lsa)] \ — l.e., does the spec capture the
: E ™~ ‘\‘ intended behavior?
INVARIANT . "»e Vaeification
:| GENERATOR | — Isthe spec right?

Fw—— — |.e,, doesthe spec satisfy critical

9/24/03 *Heitmeyer et al., Proc. CAV ‘98. properties (e.g., safety, security)?

TOOLS FOR TESTING &
CODE SYNTHESIS ARE BEING DEVELOPED

SCR e —
TOOLSET | SPECIFICATION system DEPENDENCY |
* most mature tools EDITOR GRAPH BROWSER

® installed at 100+
org’ns in industry,

CONSISTENCY SIMULATOR

covt., and CHECKER
academia MODEL i
CHECKER [-~ ! N
ANALYSIS PE——— Y. - S *= g Vo
TOOLS | THEOREM PROVER | £ & 1estcase | | source cope |

e TAME is an : (TAME)] ;|
interface to PVS r PROPERTY]

GENERATOR GENERATOR

Research Prototypes

designed to prove il CHECKER (Salsa)
properties of state: [

INVARIANT
GENERATOR

machine models

Next step: Optimized, provably
correct source code

USE OF SCR TOOLS
BY LOCKHEED-MARTIN (LM)

® LM using SCRin U.S. rocket programs -- Atlas 5, J2, IUS for satellite launch

* LM inDenver used SCR to detect critical error in software controlling
landing procedures in the Mars Polar Lander S

— "most likely cause of $165M failure of Mars Polar Lander in Dec. 99"*

e SCRisakey component of RETTA, the software approach described in
LM'swinning proposal for the Joint Strike Fighter**

— Goa of RETTA (Requirements Testability and Test Automation) is "early defect
prevention”

— "such formalized techniques[i.e., SCR] have not been used previously because
requirements have been expressed using pseudo-formal models and textual documents
written in English prose”

E + SCR Modeling SCR User's
xcerp RETTA Guidelines > Guide (HTML)
from LM ~ Guidelines
F ek l ~ .
repor Test Driver Def. T-VEC
Guidelinesm Toolset Guide»l@l

*Blackburn et al., "TAF quickly identifies error in Mars Polar Lander software," LM Joint Symp., 2000.

g,zzl%ngheed Martin report, August, 2000 (Proprietary Information). N

APPLYING CONSISTENCY
CHECKING TO THE A-7
REQUIREMENTS DOCUMENT

CONSISTENCY
CHECKER

CONSISTENCY CHECKING THE
A-7 REQ. DOCUMENT: RESULTS

A-7 requirements document contains a complete spec of the
required externally visible behavior of the A-7 flight program

Checked manually for errors by two independent review teams
Results of analyzing the specs with our consistency checker
— Check of 36 condition tables, a total of 98 rows

 Results: 17 rows in 11 tables violated the Coverage Property
(i.e., 17 missing cases detected)

— Checked all 3 mode transition tables, a total of 700 rows
(4319 logical expressions)

* Results: 57 violations of the Disjointness Property were
detected (i.e., 57 instances of non-determinism detected)

— All checks performed in a few minutes

Consistency checking finds MANY errors that
human inspections miss and usually does so in
a very short time (seconds to minutes)

9/24/03 12

OFFICE Of

EXAMPLE: DETECTION OF A

OldMode Event New Mode] Excerp o :
I “Landian” | from |
- |- f - @r -t - - - *Airaln® i14 i
The two : I e 14-page |
[OWS - t Co b e e table in the
that : I Coler s Lol A-Treq.
- t f - t - @ - - | :
overlap t Lot e :_qP_C_lfT?_rlt____:
f t f er - - t - - - - - *DI*
g | f t f @er - t - - - - . -
- t t f ot - er - -
- t t o f ot - - @ar -
f - - f @71 t - - t
f f t @T - - t
Cer - - oMiag o
S e sl - “Giicr counterexample
- @F - - - - - e e *IMSfail*

For each error detected, the
consistency checkerdisplays
1. the table containing

Event that could trigger either transition
' the error with erroneous i

@T(Doppler_up) WHEN [NOT CA_stage_complete
AND latitude > 70 deg.

AND NOT present_position_entered

AND NOT latitude > 80 deg.

AND IMSMODE=Gndal]

entry highlighted
2. a state pair demonstrating
the error (counterexample)

APPLYING THE SCR TOOLS TO
ROCKWELL'S FLIGHT
GUIDANCE SYSTEM

SPECIFICATION system
EDITOR Spec
CONSISTENCY <>
Ccontvars J
CHECKER DS SIMULATOR

ROCKWELL-COLLINS AVIATION:
FLIGHT GUIDANCE SYSTEM

Experimental application of SCR tools by Rockwell

Despite extensive reviews by Rockwell engineers, the tools found
many errors in the spec
— 28 errors detected, “many of them significant”

— one third each: constructing the specification, applying the
completeness and consistency checks, and simulating the system
behavior based on the specification

Example: Disjointness error leading to two possible flight modes

Example: Missing cases (Lateral Armed Annunciation field
undefined in certain cases)

“...preliminary execution of the specification and
completeness and consistency checking [with the
SCR tools] has found several errors in a
specification that represented our best effort at
producing a correct specification manually.”

Steve Miller
Rockwell-Collins Aviation

9/24/03 15

APPLYING THE SIMULATOR
AND MODEL CHECKING TO A
WEAPONS CONTROL PANEL

SPECIFICATION system DEPENDENCY
EDITOR GRAPH BROWSER

CONSISTENCY
CHECKER

SIMULATOR

MODEL
CHECKER

@59 ANALYZING A CONTRACTOR REQ. SPEC R
OF A WEAPONS CONTROL PANEL W&

“Pa

9/24/03

rt of WEAPONS
PANEL Interface

WCP OVERVIEW

* WCP used to prepare & launch weapons
® Sizable, complex program (~15KLOC)
* Monitored quantities

— switchesand dials

— numeric quantities (read by sensors)
® Controlled quantities

— lights

— doors and valves (set by actuators)

PRODUCING THE SCR SPEC

¢ Used scanner and OCR to read in contractor
spec of the WCP (250+ vars)

* Used text editor to convert to SCR spec
USER-FRIENDLY SIMULATION

® Scanned in diagrams of operator interface

® Used interface builder to develop realistic
simulator front-end

® Operators unfamiliar with SCR can run
scenarios to validate requirements spec

17

9 ANALYZING THE WCP SPECIFICATION
FOR SAFETY PROPERTIES

EXAMPLE SAFETY PROPERTY

Opening the Torpedo Tube Vent Valve shall be prevented unless the
Missile-to-Torpedo-Tube differential pressure is within safe limits

@T(cVENT_SOLENOID) P
kMinTRANS_OK < TRANS_A’ UTRANS_ A’ < kMaxTRANS_ oK U
kMinTRANS_OK < TRANS_ B’ UTRANS B’ < kMaxTRANS_OK

minimum allowable maximum allowable
for launch for launch

9/24/03 18

MODEL CHECKING THE
WCP SPECIFICATION (1

@ PROBLEM: Too many variables
—— , —=| SOLUTION: Remove variables
— Irrelevant to the validity
of the property

Reduces spec from
250+ to 55 variables
(~80% reduction)

Dependency Graph of orig,zspec Technique used analogous to code"slicing"

janonnopt

9/24/03 0

MODEL CHECKING THE

PROBLEM: Some variables are real-valued | u

SOLUTION: Apply data abstraction -- i.e., _
replace each real-valued variable with a

variable with a small, discrete value set _

| 9.2 14.8 u

EXAMPLE [I

» Spec refers to real-valued variable tSEL_TRANS in two expressions:

tSEL_ TRANS < 14.8 and tSEL_TRANS < 9.2
» The first expression partitions the interval [l,u] into 2 subintervals
» The second expression partitions the interval [I, 14.8) into 2 subintervals

* The new abstract variable has the type set {0, 1, 2}.
» The function f mapping the concrete var to the abstract var is defined by

M EEEEEE NI NN NN NN NN EEEEEEEEEEEEEEEEN -
[}

0if|£E tSEL_ TRANS < 9.2 | Sizeof typesetof :

f(tSEL_TRANS)=~ 1if9.2£ tSEL_TRANS < 14.8 . tSEL_TRANS QOES !

2if14.8 £ tSEL_TRANS £ u i Jrominfiniteto3

9/24/03

USING SIMULATION TO VALIDATE
VIOLATION OF A SAFETY PROPERTY

5

Simulator Control Log Tools

Monitored Variables

ttcpUpdate : Simulator

Modeclasses

Controlled Variables

nALR_YENT_PRESSURE = | TRUE
mEANK_MODE_SWITCH = [loperat

mELOW_WALYE = | shut
nBREECH_DOOR_LOCKING_RING = | locked

wCAPSULE_WIREGUIDE_RELEASE_SWITCH = | off

wCURRENT_SENSOR_RTB_SOLENOID = | TRUE

mIEPTH_HETER_CURRENT_OUTFUT = | 0,0

mDRAIN_ELECTROTE = | 0,0

S Warning

Errors found during aszertion checking.,
Check log for details,

Ok | Helpl

|

cTOBE_AVATLAELE = TRUE

Help

Y
I cTUBE_DRAIMED_INDICATOR = on F

Log Edit

Tools

Dependent Variable

Simulator
notification
of violation
In spec

I~
mORAIN_SWITCH = | center
WEQUALIZATION_NALYE = | shut Terms
WEQUALIZE_WALWE_SWITCH = | center ALTERNATE_TUBE_MO_1 = FALSE
WFAULT_STEP_SWITCH = | down ALTERMATE_TUBE_NO_3 = FALSE
wF IRING_INITIATION_YALYE_OPEN = | FALSE FUMCTION_FAULT_STEP_SWITCH = TRUE
mFIRING_WOLTAGE_PRESENT = | FALSE STOP_BOLT_FIRED_TUBE MO_1 = FALSE
WFLOOD_SWITCH = | center STOP_BOLT_FIRED_TUBE_WO_3 = FALSE
WFLOOD_TUBE_ORTERED = | FALSE TEST_MODE_FIREDN_starboard_bank = FALSE
Lo, oL = |||, BTSN [
] I —| - = E—
Step
Microstep
Halt
Backup

| nput sequence (scenario)
that produces violation

Corresponding system history
(each input and its results)

-—- State 1
wHICE_A_MWIF
-—- State 2
mYENT_WALVE

-—- State 3
wHICE_B_WIF

tPVE_OFF = TRIE 5
tRETURN_TO_BATTERY_LA
tRTB_ENCODER_COUNTS =
tRTE_LATCH = FALSE
£SEA_VALYE_HEI_SHUTTE
£SEA_VALYE_OPEN = FAL
£SELECTED_XDCR = &,
£SHUTTER_COMMANDED_OP
£SHUTTER_COMMANDED_SH
£SHUTTER_OPEW = FALSE
£5LIDE_YALYE_COMMANDE
£SLIDE_YALYE_COMMANDE
£START_RTB_EWCODER_CO
tTEST_MODE = FALSE
£TEST_MODE_FIRED = FA
HOD I IFLf

[

Spin notification
of violation in
abstract model

lambic Zhome/kirby/SCRTool/specs/Violatioyfs Kirby

e
MYC mEDCR_A_WIP 5
MYC mVENT_VWALVE open
MYC mEDCR_B_WIP 5

MV _mBANK _MODE_SWITCH opetate
spin: [1na cplpdateien
spin: trail ends after 25 steps
Hprocesses: 1

TRUE = 1

FALSE = 0

CWENT_YALVE_SOLENOID_OLD =
CWENT_WALVE_SOLENOID_NEW =
mAUR_VENT_PRESSURE_OLD = 1
mAUR_VEMT_PRESSURE_MEW = 1
mBANK_MODE_SWITCH_OLD = & i
MEANK_MODE_SWITCH_NEW = 1 i

tegerRegions.spin”

¥

assertion violated

Errar:

cVENT_WALYE_OPEN_INDI
cWENT_WALYE_SHUT_IMDI

State 4
wBAKE_MODE_SWITCH = operate

ASSERTION FRILED: TTAP_300 ' ¥

£TTCP_IN_OPERATE = TR
+YENT _WALYE_COHMANDED
TVENTIMG = TRUE

cPYC_YENT_BLOCKING_S0

cWENT_INDICATOR = TRU
YENT Wal WE SOl EROTT)

=]

9/24/03

21

REQUIRED EFFORT

APPLYING SCR TO WCP:

PERSON-

TASK WEEKS
Translate contractor SRS into SCR 0.8
Use light-weight tools to detect errors 0.2
Correct errors 0.3
Abstraction/Detection of safety violation 0.7

Devel op customized simulator front-end }{ 0.1

TOTAL >{ 2t

This small effort is quite surprising given that
*® the contractor-produced SRS was large and complex
® the contractor had no prior knowledge of SCR

9/24/03

APPLYING THE SCR TOOLS, INCLUDING THE TEST
CASE GENERATOR, TO NASA'S
FAULT PROTECTION ENGINE (FPE)

SPECIFICATION Sy;’g? DEPENDENCY
EDITOR D GRAPH BROWSER
D @
CONSISTENCY|, (@ mrsS SIMULATOR
CHECKER <> >
R S :

| TESTCASE |
| GENERATOR |

TEST CASE GENERATION

FOR NASA'S FPE

PROBLEM

NASA isusing dightly
different implementations
of the FPE invarious
spacecraft
* NASA needs high reliance
In the correctness of each
version of the FPE code
® Our task
— Todevelop aforma
spec of the FPE beh.
— From the spec, to
constuct a set of test
cases satisfying some
coverage criteria
— Thetestswill be used
to check the FPE code

9/24/03

| dl e

A

FlushAllResps
received

Run_ I nt

Waypoint detected when

One or more requests received
(no requests queued and
none being processed)

»
»

) Current request is completed
and no other requests queued OR
FlushAllResps received

FlushAllResps no higher-priority
received responses are queued

higher-priority responses queued

Current request completed when
no higher-priority requests
gueued and time-out not expired

»
»

" Current request is completed

_Resp andat least one higher-priority

request is queued

FPE Algorithm

Waypoint detected when

No_\WayPoi nt

Time-out expired
when no
higher-priority
requests
queued

Way Poi nt

24

SPECIFICATION-BASED
TEST CASE GENERATION

® Construct test predicates that “cover” the specification
— Start with the set of (total) functions whose composition form
the next state predicate

— Given a function, define a predicate for each part of the
function definition

— Each predicate is called a test predicate and is the basis for
defining a set of test cases

® Construct the test cases from the test predicates

— Use the ability of a model checker to construct
counterexamples

— The set of test cases constructed is a test suite and can be
used to automatically test the conformance of a program with a
formal specification

For details, see Gargantini/Heitmeyer,
Proc., ESEC/FSE ‘99.

9/24/03 25

PROGRESS TO DATE

9/24/03

®* An SCR spec that iswell-formed and relatively easy to

understand

— NASA personnel quickly learned to understand the SCR spec
* A simulator for use in validating the spec
— Highly effective in helping to debug the spec
— Summer intern found a serious error in the SCR spec by experimenting

with the graphical ssimulator

FPE SIMULATOR INTERFACE

* A complete set of test cases
have been constructed from
the spec using our testing tool

Request for
Ground
Response

INPUTS

Request for

Interrupting Non-Interrupting

Response

WayPoint Entered
TimeOut Expired 'ﬁ*

IDI:' IDI:'
and the model checker
Cadence SMV oL e]

Flush All Responses {n}

Request for

Response

0[]

i@

OUTPUTS

Command
Response

IDD TypeD

Error Messages

-

L1

MODE AND OTHER AUXILIARY VAR

FPE Mode Currently Active Response Saved Non-Inter.Response Timed Out?

ID|:| Type|:|

o[]

DEFERRED RESPONSE QUEUES

i Ground Responses

Queue

Interrupting Responses
Queue

IABLES
L1

Non-Inter. Responses :
i

Queue

TECHNICAL AND OTHER ISSUES

SCR LANGUAGE

* FPE algorithm involves many complex constructs that do not normally
arise in embedded systems

— e.g., feedback loops, queues, arrays

simult. events, priorities, etc. Solution: more expressive language

®* Problem: How to specify these— T rade-off: analysis more difficult

PROPERTIES/LIKELY CHANGES

* How to determine what these are
®* None of this is captured in the current NASA documentation

TEST CASE GENERATION
* How to deal with the input data at a more abstract level

* How to reduce length of the test cases —_, Solution: apply symbolic model

checking -- produces shortest
counterexample

9/24/03 27

APPLYING THE SCR TOOLS TO
CD I, AMEMBER OF A FAMILY

OF CRYPTO SYSTEMS

SPECIFICATION SEHEL DEPENDENCY
EDITOR Spec GRAPH BROWSER
CONSISTENCY
SIMULATOR CHECKER
MODEL
CHECKER

[THEOREM PROVER] |
: TAME =

[INVARANT |
| GENERATOR |

...

CD FAMILY OF
CRYPTOGRAPHIC DEVICES

encrypt

Subj: ISR Assets

CD SERVICES

Load (and zeroize) crypto algorithms and keys

Configure channdl (i.e., write alg and key into channel space)
Encrypt and decrypt data using a crypto algorithm and a key
Take emergency action when, e.g., device is tampered with
Provide the above services for m channels

Each member
is implemented
in handware

and software CD Cr'YPTOQI"ClphiC DCViCZ
2403 29

Objective
® Reduce human effort needed to

verify properties with atheorem
prover

Design Goals
® Easy to create specs
® Natura formulation of properties

® ‘Natural’ proof stepsthat matchin
size/kind steps used in hand proofs

® Proofssimilar to hand proofs

Why build upon PV S?

(

Reasoning in the
Timed Automata
Model

Specialized Top Layen

Induction

Templates Simulation
R.-T. System Modeled

’ as Timed Automata

Y,

Timed Automaton
Theory & Logic

r

TAME |PVS @otsise

User-
Defined
\ Strategies

~

Higher-Order Theory
Logic

J

Timed Automata Modeling Environment

® Avoid reinventing existing, well-known techniques
® UsePVSlogic asaflexible means of further proof support for automata models
® State propertiesin the expressive but natural logic of PVS

9/24/03

30

STEPS IN HAND PROOFS

VS. STEPS IN PVS PROOFS

HUMAN-STYLE

PVS

In proving A P B “suppose A"

(FLATTEN)

In proving " a. P(a): “fix a = a,

(SKOLEM <fnum> “a0”)

“By the definition of <function>" (EXPAND *“<function>")
Toshow “$a P(a) because P (a,)’ (INST <fnum> “a0”)
??? (A miracle happens here -- maybe) (GRIND)

Knowing “event P precedes state s and
P (p,s) holds” adduce “the last event
P, before s such that P (P, s)”

In starting the proof of a state
invariant: “Use induction.”

(let ((exists_case body (format nil ...))...)
(then (branch (case exists_case_body)
(then ... (branch
(apply_lemma “last_event”(...)))))))
."...""..aJtE):Ez;sE:s.l.n.v."""""""""
((then(base_caseinv)(systimpl_simp_probe)
(postpone))
(branch (induct_cases inv)
(then (reduce_case one var_expinv “t_1")
(match_univ_and_systimpl_simp_probe)
(postpone))

(then (reduce_case_no_var_exp inv)
(match_univ_and_systimpl_simp_probe)
(postpone))

Introduce the constraints applying to a
nondeterministic evalue in the poststate

(let ((eps_lemma...) (inst_pred...))
(then (lemmaeps_lemma) (inst -1 inst_pred)

(branch (split -1) ((...)(postpone))))))

9/24/03

TAME Goal: Provide natural proof steps

31

VERIFYING THE €D T SPEC (1)

SECURITY PROPERTIES

When the zeroize switch is activated, the

9/24/03

No key can be stored before an algorithm :
in the assoc. location is activated :

If undervoltage occurs in backup power
while primary power is un-available, CD
enters alarm or off mode

--

proved directly
by induction
using TAME

Isininitialization, standby, alarm, or off
mode

power, then CD isin standby, alarm or off :
mode, or goes into initialization :
Wher ey indervol tage-oeeurs i privrars:
power, then CD isin standby, alarm, or :
off mode, or goesinto initialization mode:
1£-CD-is tampered with, the keys arg -+
zeroized

32

VERIFYING THE €D T SPEC (2)

3

SECURITY PROPERTIES
When the zeroize switch is activated, the \ GEN
......... keysarezeroized .
No key can be stored before an algorithm \: Y
in the assoc. location isactivated A
If undervoltage occurs in backup power ,\(, -¥
while primary power is unavailable, CD \(l\

E.'.ﬁ'.'.'.'

9/24/03

- 4f-CD-istampered with, the keysar-e-------/-J/

enters alarm or off mode YN
If backup power is overvoltage, then CD ™ : \\\
isininitialization, standby, alarm, or off :
mode

N\

\\
When-arr overvoltage-occurs i primary - \ 3o
power, then CD isin standby, alarm or off \\
mode, or goes into initialization \
Whari:an tindervoltage oceurs in primary: iy
power, then CD isin standby, alarm, or : N
off mode, or goesinto initialization mode: -~ of

zeroized

AUTOMATICALLY
ERATED INVARIANTS*

In Initialization mode, primary
power is not unavailable

In Configuration mode, the system
Is healthy, backup power is not
overvoltage, and primary power is
not unavailable

In Idle mode, the system is healthy,
backup power is not overvoltage,
and power power is not unavailable

In Traffic Processing mode, the
system is healthy, backup power is
not overvoltage, and primary power
Is not unavailable

In Off mode, KeyBank1Key1=0
and ...

*Jeffords, Heitmeyer, 1998, 2001.

33

ANOTHER SERIOUSPROBLEM THAT g
TOOLS & TECHNOLOGY CANNOT SOLVE &/

* A major barrier to using tools in developing high assurance
systems. Thelack of high quality specs

* Attributes of ahigh quality specification

" Precise " Minimizesimplementation bias
" Unambiguous " Readable
" Minimizes redundancy " Organized as areference

document -- info is easy to find

* |sUML the/asolution? IMHO, No...
— Ambiguous: Lacksaformal semantics
— Too much opportunity for implementation bias

* \What is needed
— Higher quality specs
— Research in spec languages
— Technology that makes it easier for practitioners to write good
specs

9/24/03

ON THE ROLE OF TOOLS FOR
STATIC ANALY SIS OF CODE

* Recently, anumber of tools for static analysis of code have been
developed (mostly for C and Java) that detect code that could lead to
faults, e.q., buffer overflows, bad pointers, and arithmetic exceptions

— Some are commercialy available, e.q., Safe C, Codesurfer

— Some are proprietary, e.g., SNAP (T. Ball at Microsoft Research)

— Others have been developed at universities, e.g., ARCHER for C (D. Engler et d.,
ESEC/FME 2003, Helsinki), BOGOR for Java (M. Dwyer et al., ESEC/FSE 2003,
Helsinki)

* “Integrity static analysis’ (see Bishop, Bloomfield, et al., Proc.,
SAFECOMP 2003) using such tools should be highly effective in
detecting code that could lead to afailure in ahigh assurance system

® Such an approach should be especialy effective for developing high
assurance for legacy, third-party, and COTS software

However, to achieve high confidence that a system satisfies
critical safety (or security) properties, such analysis is not
enough: it should be combined with other analyses that
detect violations of application properties

9/24/03 3

NEED FOR SPECIALIZED

METHODS AND TOOLS
MATHEMATICAL MATHEMATICALLY
RESOURCES WELL-FOUNDED
(theories, models, SOFTWARE
and algorithms) ENGINEERING
Logics (predicate, 1st order, DISCIPLINE
higher order, etc.) Methods
Automata models L anguages
Theories underlying decision Tools
procedures Technology

Needed: A collection of well-founded software engineering disciplines,
each customized for a particular class of software, e.g.,

* Automobile software ® Avionics software
® Software for medical devices ® Software for security products

* \Web software °

9/24/03 36

SUMMARY

® Tools can be extremely useful in devel oping/eval uating software
— Find missing cases and unwanted non-determinism
— Help invalidating aformal spec
— Detect property violations
— Support formal verification of properties
— Reduce the time/effort required to construct and run test cases
— Provide more confidence in testing by constructing a carefully constructed
suite of test cases

* Most effective: A combination of tools
— Different tools usually find different kinds of errors

* A major contribution of tools: Liberate people to do the hard

Intellectual work required to build high quality specs and software

— Moreover, the “combination of human analysis and tool-based analysisis
more powerful than either alone...” (paraphrasing John Rushby)

* But, powerful tools are not enough
— Need better methods for developing high assurance software
— Need better specifications
— Need better spec languages

9/24/03 37

MY REACTION TO
MARTYN' STALK

* Wherel agree

— The emphasis in developing and certifying a high assurance system should
be on the product (especially the system and the software) and its properties,
not the process

« Martyn’s case against the SILS was very convincing
— Strong software engineering principles should be applied
— A correct formal spec of a high assurance system is critical

* Wherel disagree

— Inour experience, it costs significantly more “to do things properly”
* Doing so requires much more thought AND more competent people

— Students do not generally receive adequate training in software engineering

IN our universities

» Certainly, thisisthe casein the U.S.

— Both aformal proof AND testing can be usefully applied to a single artifact
» A proof demonstrates that the artifact satisfies a single property of interest
» Testing with good coverage evaluates a much wider range of behaviors

9/24/03 38

