
CONNIE HEITMEYER

CENTER FOR HIGH ASSURANCE COMPUTER SYSTEMS
NAVAL RESEARCH LABORATORY

WASHINGTON, DC

22nd International Conference on
Computer Safety, Reliability, and Security

SAFECOMP 2003

DEVELOPING HIGH ASSURANCE SYSTEMS:DEVELOPING HIGH ASSURANCE SYSTEMS:

ON THE ROLE OF SOFTWARE TOOLSON THE ROLE OF SOFTWARE TOOLS

2
9/24/03

• Introduction
• Background

– Overview of SCR SCR requirements method

–– SCRSCR Tools

• Applying tools in the development of high assurance
systems
– A-7 Operational Flight Program (U.S. Navy)
– Rockwell’s Flight Guidance System
– U.S. Navy’s Weapon Control Panel
– NASA’s Flight Protection Engine
– U.S. Navy Family of Cryptographic Devices

• Problems tools cannot solve
• Summary and Conclusions

OUTLINE

3
9/24/03

HIGH ASSURANCE CO M P U T E R HIGH ASSURANCE CO M P U T E R
SYST E MSYST E M

computer system where compelling evidence is required that
the system delivers its services in a manner that satisfies certain

critical properties*

S E C U R ES E C U R E

Prevents
unauthorized
disclosure,

modification,
and withholding

of sensitive
information

SAF ESAF E

Prevents
unintended
events that

result in
death, injury,

illness, or
damage to
property

R E A LR E A L-- TIMETIME F A U L TF A U L T-- T O L E R A N TT O L E R A N T

Delivers
results
within

specified
time

intervals

Guarantees a certain
quality of service

despite faults, such
as

hardware, workload,
or environmental

anomalies

SUR V I V A B L ESUR V I V A B L E

Continues to
fulfill its

mission in the
presence of

attacks,
accidents or

failures

WHAT ARE WHAT ARE
HIGH ASSURANCE SYSTEMS?HIGH ASSURANCE SYSTEMS?

C L ASSES OF HIGH C L ASSES OF HIGH
ASSU R A N CE SYST E MSASSU R A N CE SYST E MS

*Heitmeyer and Rushby, Workshop on High Assurance Systems, 1995.

4
9/24/03

MATHEMATICS VS.
ENGINEERING

MATHEMATICALMATHEMATICAL
RESOURCESRESOURCES

(e.g., theories, models, (e.g., theories, models,
and algorithms)and algorithms)

Logics (predicate, 1st order,Logics (predicate, 1st order,
higher order, etc.)higher order, etc.)

Automata models Automata models
Theories underlying decisionTheories underlying decision

proceduresprocedures
...... OUR LONGOUR LONG--TERM GOALTERM GOAL

(Semi-)Automatic Transformation
of a Specification into a

Provably Correct, Efficient Program

(Semi(Semi--)Automatic Transformation)Automatic Transformation
of a Specification into a of a Specification into a

Provably Correct, Efficient ProgramProvably Correct, Efficient Program

MATHEMATICALLY MATHEMATICALLY
WELLWELL--FOUNDEDFOUNDED

SOFTWARESOFTWARE
ENGINEERINGENGINEERING

DISCIPLINEDISCIPLINE

MethodsMethods
LanguagesLanguages

ToolsTools
TechnologyTechnology

5
9/24/03

HOW CAN TOOLS HELP IN
DEVELOPING HIGH ASSURANCE SYSTEMS?

• Three major problems in software development
– High cost of developing software
– Lengthy software development times
– Software errors

• Tools can help reduce all three
– Can reduce software development costs

• Automating a task can dramatically reduce the cost of the task

– In many cases, can perform analysis much faster than
humans
• Often, a tool can do a task in fractions of a seconds

• Doing the task manually can require orders of magnitude more time

– Can find errors humans miss
• Typically, human inspections overlook many errors

• For certain classes of errors, tools can find ALL of the errors

6
9/24/03

HISTORY OF
SCR SCR APPROACH

l 1978: Heninger,Parnas+ publish A-7/SCR requirements document
— Tabular notation
— Events and conditions
— Mode classes and terms

l 1980s-early 1990s: SCR applied to a wide range of systems
— Telephone networks (AT&T Bell Labs)
— Submarine communications (NRL)
— Control software for nuclear plants (Ontario Hydro)
— Avionics software (Grumman)

l Early 1990s: Development of Four Variable Model and CoRE
— Parnas+ introduce and apply Four Variable Model
— Softw. Productivity Consortium develops CoRE method(based on SCR)
— Lockheed applies CoRE and SCR tables to C-130J flight program

l 1992-present: NRL develops formal SCR model and tools

SCR SCR → SSoftware CCost RReduction

7
9/24/03

SPECIFY
THE SYSTEM
PRECISELY

Use a TABULARTABULAR
notation with an
explicit formal
semantics to
specify the
required
behavior

APPLY
“CONSISTENCY

CHECKING”

Automatically
check spec for
syntax/type errors,
missing cases,
nondeterminism,
circular defs, etc.

SIMULATE
THE

SYSTEM
BEHAVIOR

Symbolically
execute the
system based
on the
(executable)
req. specs

SCRSCR GOAL: MAKE ‘FORMAL
METHODS’ PRACTICAL

As we move down the chain, we
increase
assurance in the spec

I N C R E A S I N G E F F O R T,

I N C R E A S E D E X P E R T I S E

VERIFY
SPECS USING

THEOREM PROVING

VERIFY
SPECS USING

MODEL CHECKING

Check
critical
application
properties

• Usable, scalable tabular notation
• Integrated set of robust, powerful software tools

– light-weight tools whose use does not
require math. sophistication/thm proving

– heavy-duty tools (e.g., theorem prover)

8
9/24/03

• Consistency and completeness
– Is the spec well-formed?

• Validation
– Is this the right spec?
– I.e., does the spec capture the

intended behavior?
• Verification

– Is the spec right?
– I.e., does the spec satisfy critical

properties (e.g., safety, security)?

THEOREM PROVER

INVARIANT
GENERATOR

SCRSCR
TOOLSETTOOLSET

PROPERTY
CHECKER (Salsa)

DEPENDENCY
GRAPH BROWSER

SPECIFICATION
EDITOR

MODEL
CHECKER

system
spec

CONSISTENCY
CHECKER

modes

events

mon vars

cont vars

conditions
terms• most mature tools

• installed at 100+
org’ns in industry,
govt., and
academia

SCRSCR TOOLS FOR DEVELOPING
SOFTWARE REQUIREMENTS*

SIMULATOR

New New
ANALYSIS TOOLS ANALYSIS TOOLS

*Heitmeyer et al., Proc. CAV ‘98.

TOOLS FOR TESTING & TOOLS FOR TESTING &
CODE SYNTHESIS ARE BEING DEVELOPEDCODE SYNTHESIS ARE BEING DEVELOPED

THEOREM PROVER
(TAME)

INVARIANT
GENERATOR

ANALYSIS ANALYSIS
TOOLSTOOLS

SCR SCR
TOOLSETTOOLSET

PROPERTY
CHECKER (Salsa)

CONSISTENCY
CHECKER

DEPENDENCY
GRAPH BROWSER

SPECIFICATION
EDITOR

MODEL
CHECKER

system
spec

SIMULATOR

modes

events

mon vars

cont vars

conditions
terms

• most mature tools

• installed at 100+
org’ns in industry,
govt., and
academia

• TAME is an
interface to PVS
designed to prove
properties of state
machine models

TEST CASE
GENERATOR

SOURCE CODE
GENERATOR

Research Prototypes Research Prototypes

Next step: Optimized, provablyNext step: Optimized, provably
correct source codecorrect source code

10
9/24/03

USE OF SCR TOOLS
BY LOCKHEED-MARTIN (LM)

• LM using SCR in U.S. rocket programs -- Atlas 5, J2, IUS for satellite launch

• LM in Denver used SCR to detect critical error in software controlling
landing procedures in the Mars Polar Lander

– "most likely cause of $165M failure of Mars Polar Lander in Dec. 99"*

• SCR is a key component of RETTARETTA, the software approach described in
LM's winning proposal for the Joint Strike Fighter**

– Goal of RETTARETTA (Requirements Testability and Test Automation) is "early defect
prevention"

– "such formalized techniques [i.e., SCR] have not been used previously because
requirements have been expressed using pseudo-formal models and textual documents
written in English prose"

**Blackburn et al.,Blackburn et al., "TAF quickly identifies error in Mars Polar Lander software," LM"TAF quickly identifies error in Mars Polar Lander software," LM Joint Joint SympSymp., 2000. ., 2000.
****Lockheed Martin report, August, 2000 (Proprietary Information).Lockheed Martin report, August, 2000 (Proprietary Information).

SCR ModelingSCR Modeling
GuidelinesGuidelines&

RETTARETTA
GuidelinesGuidelines &&

&&
Test Driver Def.Test Driver Def.
GuidelinesGuidelines

TT--VECVEC
Toolset GuideToolset Guide

SCR User'sSCR User's
Guide Guide (HTML)(HTML)Excerpt Excerpt

from LMfrom LM
reportreport****

APPLYING CONSISTENCY
CHECKING TO THE A-7

REQUIREMENTS DOCUMENT

APPLYING CONSISTENCY
CHECKING TO THE A-7

REQUIREMENTS DOCUMENT

CONSISTENCY
CHECKER

system
spec

modes

events

mon vars

cont vars

conditions
terms

12
9/24/03

• A-7 requirements document contains a complete spec of the
required externally visible behavior of the A-7 flight program

• Checked manually for errors by two independent review teams
• Results of analyzing the specs with our consistency checker

– Check of 36 condition tables, a total of 98 rows
• Results: 17 rows in 11 tables violated the Coverage Property

(i.e., 17 missing cases detected)

– Checked all 3 mode transition tables, a total of 700 rows
(4319 logical expressions)

• Results: 57 violations of the Disjointness Property were
detected (i.e., 57 instances of non-determinism detected)

– All checks performed in a few minutes

CONSISTENCY CHECKING THE
A-7 REQ. DOCUMENT: RESULTS

Consistency checking finds MANY errors that
human inspections miss and usually does so in

a very short time (seconds to minutes)

Consistency checking finds MANY errors that
human inspections miss and usually does so in

a very short time (seconds to minutes)

 - @F f - - - - - - - t - - - - - -
--- --

 - - - f - - - - @T - t - - - - - -
 - - - f - - - - @T - - t - - - - -

 - - - f - - - - t - @T - - - - - -
 - - - f - - - - t - - @T - - - - -

--- --
 f - - t - - f - @T - t - - - - - -

 f - - t - - f - @T - - t - - - - -
 - - - t - - f - t - @T - - - - - -

 - - - t - - f - t - - @T - - - - -
--- --

 f - - - - - t f @T - - t - - - - -
 f - - - - - t f @T - t - - - - - -

 - - - t - - t f t - @T - - - - - -
 - - - t - - t f t - - @T - - - - -

 f - - - - - - f @T t - - t - - - -
 f - - - - - - f t @T - - t - - - -

--- --
 @T - - - - - - - - - - - - - - - -

--- --
 - - - - - - - - - - - - - @T - - -

--- --
 - - - - - - - - - - - - - - @T - -

--- --
 - - - - - @F - - - - - - - - - - -

--- --
 - - - - - - - @T - - - - - - - - -

Current

Mode

I

New Mode

Airaln

DIG

OLB

DI

Mag sl

Grid

IMS fail

PolarI

Landlan

For each error detected, the
consistency checker displays
1. the table containing

the error with erroneous
entry highlighted

2. a state pair demonstrating
the error (counterexample)

EXAMPLE: DETECTION OF A
DISJOINTNESS ERROR

Event that could trigger either transition

@T(Doppler_up) WHEN [NOT CA_stage_complete
AND latitude > 70 deg.

AND NOT present_position_entered
AND NOT latitude > 80 deg.
AND IMSMODE=Gndal]

@T(Doppler_up) WHEN [NOT CA_stage_complete
AND latitude > 70 deg.

AND NOT present_position_entered
AND NOT latitude > 80 deg.
AND IMSMODE=Gndal]

counterexample

Excerpt
from
14-page
table in the
A-7 req.
document

Old Mode New ModeEvent

The two The two
rowsrows
that that
overlapoverlap

APPLYING THE SCR TOOLS TO
ROCKWELL’S FLIGHT
GUIDANCE SYSTEM

APPLYING THE SCR TOOLS TO
ROCKWELL’S FLIGHT
GUIDANCE SYSTEM

CONSISTENCY
CHECKER

SPECIFICATION
EDITOR

system
spec

SIMULATOR

modes

events

mon vars

cont vars

conditions
terms

15
9/24/03

ROCKWELL-COLLINS AVIATION:
FLIGHT GUIDANCE SYSTEM

• Experimental application of SCR tools by Rockwell

• Despite extensive reviews by Rockwell engineers, the tools found
many errors in the spec

– 28 errors detected, “many of them significant”
– one third each: constructing the specification, applying the

completeness and consistency checks, and simulating the system
behavior based on the specification

Example: Disjointness error leading to two possible flight modes

Example: Missing cases (Lateral Armed Annunciation field
undefined in certain cases)

“...preliminary execution of the specification and
completeness and consistency checking [with the
SCR tools] has found several errors in a
specification that represented our best effort at
producing a correct specification manually.”

“...preliminary execution of the specification and
completeness and consistency checking [with the
SCR tools] has found several errors in a
specification that represented our best effort at
producing a correct specification manually.”

Steve Miller
Rockwell-Collins Aviation

APPLYING THE SIMULATOR
AND MODEL CHECKING TO A
WEAPONS CONTROL PANEL

APPLYING THE SIMULATOR
AND MODEL CHECKING TO A
WEAPONS CONTROL PANEL

CONSISTENCY
CHECKER

DEPENDENCY
GRAPH BROWSER

SPECIFICATION
EDITOR

MODEL
CHECKER

system
spec

SIMULATOR

modes

events

mon vars

cont vars

conditions
terms

17
9/24/03

ANALYZING A CONTRACTOR REQ. SPEC
OF A WEAPONS CONTROL PANEL

WCP OVERVIEW
• WCP used to prepare & launch weapons
• Sizable, complex program (~15KLOC)
• Monitored quantities

– switches and dials
– numeric quantities (read by sensors)

• Controlled quantities
– lights
– doors and valves (set by actuators)

PRODUCING THE SCR SPEC
• Used scanner and OCR to read in contractor

spec of the WCP (250+ vars)
• Used text editor to convert to SCR spec

Part of WEAPONS CONTROL
PANEL Interface

Weapons Control Panel

Weapons Control Panel

USER-FRIENDLY SIMULATION
• Scanned in diagrams of operator interface
• Used interface builder to develop realistic

simulator front-end
• Operators unfamiliar with SCR can run

scenarios to validate requirements spec

18
9/24/03

ANALYZING THE WCP SPECIFICATION
FOR SAFETY PROPERTIES

@T(cVENT_SOLENOID) ⇒
kMinTRANS_OK < TRANS_A’ ∧ TRANS_A’ < kMaxTRANS_OK ∨
kMinTRANS_OK < TRANS_B’ ∧ TRANS_B’ < kMaxTRANS_OK

Opening the Torpedo Tube Vent Valve shall be prevented unless the
Missile-to-Torpedo-Tube differential pressure is within safe limits

EXAMPLE SAFETY PROPERTY

minimum allowable
for launch

maximum allowable
for launch

19
9/24/03

MODEL CHECKING THE
WCP SPECIFICATION (1)

Dependency Graph of Orig.Spec

Dependency Graph of Abstraction

Reduces spec from
250+ to 55 variables

(~80% reduction)

PROBLEM: Too many variables
SOLUTION: Remove variables

irrelevant to the validity
of the property

Technique used analogous to code“slicing”Technique used analogous to code“slicing”

20
9/24/03

MODEL CHECKING THE
WCP SPECIFICATION(2)

PROBLEM: Some variables are real-valued

SOLUTION: Apply data abstraction -- i.e.,
replace each real-valued variable with a
variable with a small, discrete value set

Size of type set of
tSEL_TRANS goes

from infinite to 3

l u

9.2l u

9.2l u14.8

0 if l ≤ tSEL_TRANS < 9.2

f (tSEL_TRANS) = 1 if 9.2 ≤ tSEL_TRANS < 14.8

2 if 14.8 ≤ tSEL_TRANS ≤ u

• Spec refers to real-valued variable tSEL_TRANS in two expressions:
tSEL_TRANS < 14.8 and tSEL_TRANS < 9.2

• The first expression partitions the interval [l,u] into 2 subintervals
• The second expression partitions the interval [l, 14.8) into 2 subintervals
• The new abstract variable has the type set {0, 1, 2}.
• The function f mapping the concrete var to the abstract var is defined by

EXAMPLE

21
9/24/03

USING SIMULATION TO VALIDATE
VIOLATION OF A SAFETY PROPERTY

18.0

18.0

Corresponding system history
(each input and its results)

Simulator
notification
of violation
in spec

Input sequence (scenario)
that produces violation

Spin notification
of violation in
abstract model

18.0

18.0

22
9/24/03

A P P L YIN G S C R T O WCP:
R E Q U I R E D E F F O R T

PERSON-
WEEKS

Translate contractor SRS into SCR 0.8
Use light-weight tools to detect errors 0.2
Correct errors 0.3
Abstraction/Detection of safety violation 0.7
Develop customized simulator front-end 3.0

~5

TASK

This small effort is quite surprising given that
• the contractor-produced SRS was large and complex

• the contractor had no prior knowledge of SCR

TOTAL
0.1

2+

CONSISTENCY
CHECKER

DEPENDENCY
GRAPH BROWSER

SPECIFICATION
EDITOR

system
spec

SIMULATOR

modes

events

mon vars

cont vars

conditions
terms

TEST CASE
GENERATOR

APPLYING THE SCR TOOLS, INCLUDING THE TEST
CASE GENERATOR, TO NASA’S

FAULT PROTECTION ENGINE (FPE)

APPLYING THE SCR TOOLS, INCLUDING THE TEST
CASE GENERATOR, TO NASA’S

FAULT PROTECTION ENGINE (FPE)

24
9/24/03

PROBLEM
• NASA is using slightly

different implementations
of the FPEFPE in various
spacecraft

• NASA needs high reliance
in the correctness of each
version of the FPEFPE code

• Our task
– To develop a formal

spec of the FPEFPE beh.
– From the spec, to

constuct a set of test
cases satisfying some
coverage criteria

– The tests will be used
to check the FPE code

Idle No_WayPoint

Run_Int_Resp WayPoint

Current request completed when
 no higher-priority requests
 queued and time-out not expired

Current request is completed
 and at least one higher-priority
 request is queued

Waypoint detected when
 no higher-priority
 responses are queued

Time-out expired
 when no
 higher-priority
 requests
 queued

One or more requests received
 (no requests queued and
 none being processed)

Current request is completed
 and no other requests queued OR
 FlushAllResps received

FlushAllResps
 received FlushAllResps

 received

Waypoint detected when
 higher-priority responses queued

FPE Algorithm

TEST CASE GENERATION
FOR NASA’S FPE

25
9/24/03

SPECIFICATION-BASED
TEST CASE GENERATION

• Construct test predicates that “cover” the specification
– Start with the set of (total) functions whose composition form

the next state predicate
– Given a function, define a predicate for each part of the

function definition
– Each predicate is called a test predicate and is the basis for

defining a set of test cases

• Construct the test cases from the test predicates
– Use the ability of a model checker to construct

counterexamples
– The set of test cases constructed is a test suite and can be

used to automatically test the conformance of a program with a
formal specification

For details, see Gargantini/Heitmeyer,
Proc., ESEC/FSE ‘99.

For details, see Gargantini/Heitmeyer,
Proc., ESEC/FSE ‘99.

26
9/24/03

PROGRESS TO DATE

• An SCR spec that is well-formed and relatively easy to
understand
– NASA personnel quickly learned to understand the SCR spec

• A simulator for use in validating the spec
– Highly effective in helping to debug the spec
– Summer intern found a serious error in the SCR spec by experimenting

with the graphical simulator

• A complete set of test cases
have been constructed from
the spec using our testing tool
and the model checker
Cadence SMV

FPE SIMULATOR INTERFACEFPE SIMULATOR INTERFACEFPE SIMULATOR INTERFACE
INPUTSINPUTSINPUTS OUTPUTSOUTPUTSOUTPUTS

Request for
Ground

Response

Request for
Interrupting

Response

Request for
Non-Interrupting

Response

ID Type

WayPoint Entered

TimeOut Expired

Flush All Responses

IDID ID

Command
Response

ID Type

Error Messages

MODE AND OTHER AUXILIARY VARIABLESMODE AND OTHER AUXILIARY VARIABLES
FPE Mode Currently Active Response

ID Type

Saved Non-Inter. Response

ID

DEFERRED RESPONSE QUEUES

Timed Out?

Completed
Response

Ground Responses
Queue

Non-Inter. Responses
Queue

Interrupting Responses
Queue

Current Length = Current Length = Current Length =

27
9/24/03

TECHNICAL AND OTHER ISSUES

SCR LANGUAGE
• FPE algorithm involves many complex constructs that do not normally

arise in embedded systems

– e.g., feedback loops, queues, arrays
simult. events, priorities, etc.

• Problem: How to specify these

PROPERTIES/LIKELY CHANGES
• How to determine what these are

• None of this is captured in the current NASA documentation

TEST CASE GENERATION
• How to deal with the input data at a more abstract level

• How to reduce length of the test cases

Solution: more expressive languageSolution: more expressive language
TradeTrade--off: analysis more difficultoff: analysis more difficult

Solution: apply symbolic model Solution: apply symbolic model
checking checking ---- produces shortest produces shortest
counterexamplecounterexample

 THEOREM PROVER
TAME

INVARIANT
GENERATOR

DEPENDENCY
GRAPH BROWSER

SPECIFICATION
EDITOR

MODEL
CHECKER

system
spec

CONSISTENCY
CHECKER

modes

events

mon vars

cont vars

conditions
terms

SIMULATOR

APPLYING THE SCR TOOLS TO
CD I, A MEMBER OF A FAMILY

OF CRYPTO SYSTEMS

APPLYING THE SCR TOOLS TO
CD I, A MEMBER OF A FAMILY

OF CRYPTO SYSTEMS

29
9/24/03

To: To: …………
From:From: …………
SubjSubj: ISR Assets: ISR Assets
……………………
……………………

C
D

encryptencrypt

C
D

decryptdecrypt

commcomm..
systemsystem

• Load (and zeroize) crypto algorithms and keys
• Configure channel (i.e., write alg and key into channel space)
• Encrypt and decrypt data using a crypto algorithm and a key
• Take emergency action when, e.g., device is tampered with
• Provide the above services for m channels

CDCD SERVICES

CD FAMILYCD FAMILY OFOF
CRYPTOGRAPHIC DEVICES

CD: CCryptographicryptographic DDeviceevice

Each memberEach member
is implementedis implemented
in in handwarehandware
andand softwaresoftware

30
9/24/03

Objective
l Reduce human effort needed to

verify properties with a theorem
prover

Why build upon PVS?
l Avoid reinventing existing, well-known techniques
l Use PVS logic as a flexible means of further proof support for automata models
l State properties in the expressive but natural logic of PVS

Timed Automaton
Theory & Logic

Proof Syste mPVS

Reasoning in the
Timed Automata

Model
R.-T. System Modeled

as Timed Automata

Special ized Top Layer

Templates

Higher- Order
Logic

Type
Theory

Induction

Simulation

User-
Defined

Strategies

TAMETAME

Timed Automata Modeling Environment

Design Goals
l Easy to create specs
l Natural formulation of properties
l ‘Natural’ proof steps that match in

size/kind steps used in hand proofs
l Proofs similar to hand proofs

TAME -- A SPECIALIZED PVS INTERFACE*TAMETAME -- A SPECIALIZED PVS INTERFACE*

31
9/24/03

STEPS IN HAND PROOFS
VS. STEPS IN PVS PROOFS

 In proving A ⇒⇒ B : “suppose A ” (FLA TTEN)

In proving ∀∀ a. P (a) : “f ix a = a 0” (SKOLEM <f num> “a0”)

 “By the def ini tion of < f unction> ” (EX PA N D “<f unction> ”)

To show “∃∃ a. P (a) because P (a 0) ” (IN ST <f num> “a0”)

??? (A miracle happens here - - maybe) (GRIN D)

Know ing “event ππ precedes state s and
 P (ππ,, s) ho lds” adduce “the last event

ππ0 bef ore s such that P (ππ0,, s) ”

(let ((exists_case_body (format n il . . .)) . . .)
(then (branch (case exists_case_body)
 (then . . . (branch
 (apply_lemma “last_event”(. . .)))))))

In starting the proof o f a state
invariant: “U se induction. ”

(then (branch (auto_cases inv)
 ((then(base_caseinv)(systimpl_simp_probe)
 (postpone))
 (branch (induct_cases inv)
 (then (reduce_case_one_var_exp inv “t_1”)
 (match_univ_and_systimpl_simp_probe)
 (postpone))

 . . .
 (then (reduce_case_no_var_exp inv)
 (match_univ_and_systimpl_simp_probe)
 (postpone))

Introduce the constraints apply ing to a
nondeterministic εε value in the poststate

(let ((eps_lemma . . .) (inst_pred . . .))
 (then (lemma eps_lemma) (inst -1 inst_pred)
 (branch (split -1) ((. . .)(postpone))))))

HUMAN-STYLE PVS

TAME Goal: Provide natural proof stepsTAME Goal: Provide natural proof steps

32
9/24/03

1 When the zeroize switch is activated, the
keys are zeroized

2 No key can be stored before an algorithm
in the assoc. location is activated

3 If undervoltage occurs in backup power
while primary power is un-available, CD
enters alarm or off mode

4 If backup power is overvoltage, then CD
is in initialization, standby, alarm, or off
mode

5 When an overvoltage occurs in primary
power, then CD is in standby, alarm or off
mode, or goes into initialization

6 When an undervoltage occurs in primary
power, then CD is in standby, alarm, or
off mode, or goes into initialization mode

7 If CD is tampered with, the keys are
zeroized

SECURITY PROPERTIES

VERIFYING THE CD I SPEC (1)

proved directly
by induction
using TAME

33
9/24/03

1 When the zeroize switch is activated, the
keys are zeroized

2 No key can be stored before an algorithm
in the assoc. location is activated

3 If undervoltage occurs in backup power
while primary power is unavailable, CD
enters alarm or off mode

4 If backup power is overvoltage, then CD
is in initialization, standby, alarm, or off
mode

5 When an overvoltage occurs in primary
power, then CD is in standby, alarm or off
mode, or goes into initialization

6 When an undervoltage occurs in primary
power, then CD is in standby, alarm, or
off mode, or goes into initialization mode

7 If CD is tampered with, the keys are
zeroized

• In Initialization mode, primary
power is not unavailable

• In Configuration mode, the system
is healthy, backup power is not
overvoltage, and primary power is
not unavailable

• In Idle mode, the system is healthy,
backup power is not overvoltage,
and power power is not unavailable

• In Traffic Processing mode, the
system is healthy, backup power is
not overvoltage, and primary power
is not unavailable

• In Off mode, KeyBank1Key1=0
and …

SECURITY PROPERTIES AUTOMATICALLY
GENERATED INVARIANTS*

VERIFYING THE CD I SPEC (2)

*Jeffords, Heitmeyer, 1998, 2001*Jeffords, Heitmeyer, 1998, 2001..

34
9/24/03

ANOTHER SERIOUS PROBLEM THAT
TOOLS & TECHNOLOGY CANNOT SOLVE

• A major barrier to using tools in developing high assurance
systems: The lack of high quality specs

• Attributes of a high quality specification

• Is UML the/a solution? IMHO, No…
– Ambiguous: Lacks a formal semantics
– Too much opportunity for implementation bias

• What is needed
– Higher quality specs
– Research in spec languages
– Technology that makes it easier for practitioners to write good

specs

§ Precise

§ Unambiguous

§ Minimizes redundancy

§ Minimizes implementation bias

§ Readable

§ Organized as a reference
document -- info is easy to find

35
9/24/03

ON THE ROLE OF TOOLS FOR
STATIC ANALYSIS OF CODE

• Recently, a number of tools for static analysis of code have been
developed (mostly for C and Java) that detect code that could lead to
faults, e.g., buffer overflows, bad pointers, and arithmetic exceptions

– Some are commercially available, e.g., Safe C, Codesurfer
– Some are proprietary, e.g., SNAP (T. Ball at Microsoft Research)
– Others have been developed at universities, e.g., ARCHER for C (D. Engler et al.,

ESEC/FME 2003, Helsinki), BOGOR for Java (M. Dwyer et al., ESEC/FSE 2003,
Helsinki)

• “Integrity static analysis” (see Bishop, Bloomfield, et al., Proc.,
SAFECOMP 2003) using such tools should be highly effective in
detecting code that could lead to a failure in a high assurance system

• Such an approach should be especially effective for developing high
assurance for legacy, third-party, and COTS software

However, to achieve high confidence that a system satisfies However, to achieve high confidence that a system satisfies
critical safety (or security) properties, such analysis is not critical safety (or security) properties, such analysis is not
enough: it should be combined with other analyses that enough: it should be combined with other analyses that
detect detect violations of application propertiesviolations of application properties

36
9/24/03

Needed: A collection of well-founded software engineering disciplines,
each customized for a particular class of software, e.g.,

NEED FOR SPECIALIZED
METHODS AND TOOLS

MATHEMATICALMATHEMATICAL
RESOURCESRESOURCES

(theories, models, (theories, models,
and algorithms)and algorithms)

MATHEMATICALLY MATHEMATICALLY
WELLWELL--FOUNDEDFOUNDED

SOFTWARESOFTWARE
ENGINEERINGENGINEERING

DISCIPLINEDISCIPLINELogics (predicate, 1st order,Logics (predicate, 1st order,
higher order, etc.)higher order, etc.)

Automata models Automata models
Theories underlying decisionTheories underlying decision

proceduresprocedures
……

• Automobile software

• Software for medical devices

• Web software

• Avionics software

• Software for security products

• …

MethodsMethods
Languages Languages

ToolsTools
TechnologyTechnology

37
9/24/03

SUMMARY

• Tools can be extremely useful in developing/evaluating software
– Find missing cases and unwanted non-determinism
– Help in validating a formal spec
– Detect property violations
– Support formal verification of properties
– Reduce the time/effort required to construct and run test cases
– Provide more confidence in testing by constructing a carefully constructed

suite of test cases
• Most effective: A combination of tools

– Different tools usually find different kinds of errors

• A major contribution of tools: Liberate people to do the hard
intellectual work required to build high quality specs and software
– Moreover, the “combination of human analysis and tool-based analysis is

more powerful than either alone…” (paraphrasing John Rushby)

• But, powerful tools are not enough
– Need better methods for developing high assurance software
– Need better specifications
– Need better spec languages

38
9/24/03

MY REACTION TO
MARTYN’S TALK

• Where I agree
– The emphasis in developing and certifying a high assurance system should

be on the product (especially the system and the software) and its properties,
not the process

• Martyn’s case against the SILS was very convincing

– Strong software engineering principles should be applied
– A correct formal spec of a high assurance system is critical

• Where I disagree
– In our experience, it costs significantly more “to do things properly”

• Doing so requires much more thought AND more competent people

– Students do not generally receive adequate training in software engineering
in our universities

• Certainly, this is the case in the U.S.

– Both a formal proof AND testing can be usefully applied to a single artifact
• A proof demonstrates that the artifact satisfies a single property of interest
• Testing with good coverage evaluates a much wider range of behaviors

