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Abstract

We review a number of illustrative example programs for the Java
Memory Model (JMM) [6, 3], relating them to the original design goals
and giving intuitive explanations (which can be made precise). We con-
sider good, bad and ugly examples. The good examples are allowed be-
haviours in the JMM, showing possibilities for non sequentially consistent
executions and reordering optimisations. The bad examples are prohibited
behaviours, which are clearly ruled out by the JMM. The ugly examples
are most interesting: these are tricky cases which illustrate some prob-
lem areas for the current formulation of the memory model, where the
anticipated design goals are not met. For some of these we mention possi-
ble fixes, drawing on knowledge we gained while formalising the memory
model in the theorem prover Isabelle [1].

1 Introduction

The Java Memory Model (JMM) [6, 3] is a relaxed memory model which acts as
a contract between Java programmers, compiler writers and JVM implementors.
It explains possible and impossible behaviours for multi-threaded programs. The
JMM is necessary to allow efficient execution and compilation of Java programs,
which may result in optimisations that affect the order of memory operations.
The case that is usually desirable is sequential consistency (SC) [4], which,
roughly speaking, says that the outcome of executing a multi-threaded program
should be equivalent to the outcome of executing some sequential ordering of its
operations which agrees with the order that statements appear in the program.
Sequential consistency has acted as a correctness criterion in the study of relaxed
memory models and numerous variations have been explored; we discuss our own
precise definition of SC for the JMM later.

Sequential consistency helps make multi-threaded programming comprehen-
sible to the programmer. But for parts of a program which are executing in
unrelated threads, sequential consistency may not be required. Moreover, in
pursuit of the best possible performances, sophisticated concurrent algorithms
have been designed which work in the presence of data races. A data race in
a program is a point where the program itself fails to specify an ordering on
conflicting actions across threads, so sequential consistency is underdefined.

The JMM is one of the first explored memory models which connects a high-
level programming language to low-level executions (most other relaxed memory



models work at the hardware level). The JMM has been designed to make three
guarantees:

1. A promise for programmers: sequential consistency must be sacrificed to
allow optimisations, but it will still hold for data race free programs. This
is the data race free (DRF) guarantee.

2. A promise for security: even for programs with data races, values should
not appear “out of thin air”, preventing unintended information leakage.

3. A promise for compilers: common hardware and software optimisations
should be allowed as far as possible without violating the first two require-
ments.

The key question one asks about a program is whether a certain outcome is
possible through some execution. Unfortunately, with the present JMM, it can
be quite difficult to tell the answer to this! In part, the memory model has been
designed around a set of examples (e.g., the causality tests in [8]) which have
helped shape the definitions; but gaps and informality in the present definitions
mean that there are still unclear cases.

Points 1 and 2 act to prohibit certain executions, whereas point 3 acts to
require certain executions. It seems that only point 1 provides a precise set of
behaviours that are disallowed, i.e., the non-SC behaviours for data race free
programs. Regarding point 3, exactly which optimisations must be allowed has
been a source of some debate and is still in flux [8, 9]. Regarding point 2, the
“out of thin air” requirement has yet to be precisely characterised; we only know
of forbidden examples which violate causality to allow behaviours that result in
arbitrary values.

This paper discusses some illustrative examples for the Java Memory Model,
relating them back to these goals and to the JMM definitions, and in particular,
the definitions as we have formalised them [1]. Our contribution is to collect
together some canonical examples (including tricky cases), and to explain how
they are dealt with by our formal definitions, which represent an improvement
and clarification of the official definitions. Despite the intricacies of the JMM
definitions, we present the examples at an informal level as far as possible. We
also give some opinions on future improvements of the JMM.

The rest of this paper is structured as follows. Section 2 explains intuitively
how behaviours are justified in the memory model. Sections 3, 4 and 5 then
present the examples: the good (allowed), the bad (prohibited) and the ugly
(tricky cases where there is disparity between the JMM design aims and the
actual definitions). Appendix A recalls some of the definitions of the JMM in
a more precise format for reference; it should be studied by those who seek
a complete understanding but can be ignored by a casual reader. Section 6
concludes.

2 A Bluffer’s Guide to the JMM

Motivation. Before we introduce the memory model, let us examine three
canonical examples (from [6]), given in Fig. 1, which illustrate the requirements
mentioned above. The programs show statements in parallel threads, operating
on thread-local registers (r1, r2, ...) and shared memory locations (x, v, ...).



initially x =y = 0

initially x = y = 0 sync (m1) sync (m2) initially x = y = 0
rl = x 2 =y {r1:=x} {r2:=y} rl :=x r2 :=y
y =1 x =1 sync (m2) sync (m1) y :=rl X : 2

y=1) | (=)

A. (allowed) B. (prohibited) C. (prohibited)

Is it possible to get r1 = r2 =1 at the end of an execution?

Figure 1: Examples of legal and illegal executions.

In an interleaved semantics, program A could not result in r1 = r2 = 1, because
one of the statements r1:=x, r2:=y must be executed first, thus either r1 or r2
must be 0. However, current hardware can, and often does, execute instructions
out of order. Imagine a scenario where the read ri:=x is too slow because of
cache management. The processor can realise that the next statement y:=1 is
independent of the read, and instead of waiting for the read it performs the write.
The second thread then might execute both of its instructions, seeing the write
y:=1 (so r2 = 1). Finally, the postponed read of x can see the value 1 written
by the second thread, resulting in r1 = r2 = 1. Similar non-intuitive behaviours
could result from simple compiler optimisations, such as common subexpression
elimination. The performance impact of disabling these optimisations on the
current architectures would be huge; therefore, we need a memory model that
allows these behaviours.

However, there are limits on the optimisations allowed—if the programmer
synchronises properly, e.g., by guarding each access to a field by a synchronized
section on a designated monitor, then the program should only have sequen-
tially consistent behaviours. This is why the behaviour r1 = r2 = 1 must be
prohibited in program B of Fig. 1.

Even if a program contains data races, there must be some security guaran-
tees. Program C in Fig. 1 illustrates an unwanted “out-of-thin-air” behaviour—
if a value does not occur anywhere in the program, it should not be read in any
execution of the program. The out-of-thin-air behaviours could cause security
leaks, because references to objects from possibly confidential parts of program
could suddenly appear as a result of a self-justifying data race. This might let
an applet on a web page to see possibly sensitive information, or, even worse,
get a reference to an object that allows unprotected access to the host computer.

JMM framework. Now we introduce the key concepts behind the JMM.
Unlike interleaved semantics, the Java Memory Model has no explicit global
ordering of all actions by time consistent with each thread’s perception of time,
and has no global store. Instead, executions are described in terms of memory
related actions, partial orders on these actions, and a visibility function that
assigns a write action to each read action.

An action is a tuple consisting of a thread identifier, an action kind, and a
unique identifier. The action kind can be either a normal read from variable
x, a normal write to x, a volatile read from v or write to v, a lock of monitor
m, or an unlock of monitor m. The volatile read/write and lock/unlock actions



are called synchronisation actions. An execution consists of a set of actions,
a program order, a synchronisation order, a write-seen function, and a value-
written function. The program order (<,,) is a total order on the actions of each
thread, but it does not relate actions of different threads. All synchronisation
actions are totally ordered by the synchronisation order (<,,). From these two
orders we construct a happens-before order of the execution: action a happens-
before action b (a <pp b) if (1) a synchronises-with b, i.e., a <,, b, a is an unlock
of m and b is a lock of m, or a is a volatile write to v and b is a volatile read from v,
or (2) a <p, b, or (3) there is an action ¢ such that a <pp ¢ <pp b. The happens-
before order is an upper bound on the visibility of writes—a read happening
before a write should never see that write, and a read r should not see a write
w if there is another write happening “in-between”, i.e., if w <p, w’ <pp r and
w # w', then r cannot see w.!

We say that an execution is sequentially consistent if there is a total order
consistent with the program order, such that each read sees the most recent
write to the same variable in that order. A pair of memory accesses to the same
variable is called a data race if at least one of the accesses is a write and they are
not ordered by the happens-before order. A program is correctly synchronised
(or data-race-free) if no sequentially consistent execution contains a data race.

A tricky issue is initialisation of variables. The JMM says

The write of the default value (zero, false, or null) to each variable
synchronises-with to the first action in every thread [7]

However, normal writes are not synchronisation actions and synchronises-with
only relates synchronisation actions, so normal writes cannot synchronise-with
any action. For this paper, we will assume that all default writes are executed in
a special initialisation thread and the thread is finished before all other threads
start. Even this interpretation has problems; we mention them in Sect. 5.

Committing semantics. The basic building blocks are well-behaved execu-
tions, in which reads are only allowed to see writes that happen before them. In
these executions, reads cannot see writes through data races, and threads can
only communicate through synchronisation. For example, programs A and C in
Fig. 1 have just one such execution—the one, where r1 = r2 = 0. On the other
hand, the behaviours of program B are exactly the behaviours that could be
observed by the interleaved semantics, i.e. r1 =r2 =10, orrl =1 and r2 =0,
or r1 = 0 and r2 = 1. In fact, if a program is correctly synchronised then its
execution is well-behaved if and only if it is sequentially consistent. This does
not hold for incorrectly synchronised programs, see Sect. 5.

The Java Memory Model starts from a well-behaved execution and commits
one or more data races from the well-behaved execution. After committing the
actions involved in the data races it “restarts” the execution, but this time it
must execute the committed races. This means that each read in the execution
must be either committed and see the value through the race, or it must see
the write that happens-before it. The JMM can repeat the process, i.e., it may
choose some non-committed reads involved in a data race, commit the writes
involved in these data races if they are not committed already, commit the

1For details, see Defs 2, 4 and 6 in App. A.
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Figure 2: Justifying executions of program A from Fig. 1.

chosen reads, and restart the execution. The JMM requires all of the subsequent
executions to preserve happens-before ordering of the committed actions.

This committing semantics imposes a causality order on races—the outcome
of a race must be explained in terms of previously committed races. This pre-
vents causality loops, where the outcome of a race depends on the outcome of
the very same race, e.g., the outcome r1 = 1 in program C in Fig. 1. The
DRF guarantee is a simple consequence of this procedure. If there are no data
races in the program, there is nothing to commit, and we can only generate
well-behaved executions, which are sequentially consistent. In fact, the JMM
actually commits all actions in an execution, but committing a read that sees
a write that happens before it does not create any opportunities for commit-
ting new races, because reads must see writes that happen-before them in any
well-behaved execution. Therefore the central issue is committing races, and we
explain our examples using this observation.

3 Good executions

The interesting executions are those which are not sequentially consistent, but
are legal under the JMM.

Simple reordering. First, we demonstrate the committing semantics on pro-
gram A in Fig. 1. In the well-behaved execution of this program, illustrated by
the first diagram in Fig. 2, the reads of x and y can only see the default writes
of 0, which results in r1 =r2 = 0.

There are two data races in this execution (depicted by the dotted lines, the
solid lines represent the happens-before order)—one on x and one on y. We can
commit either one of the races or both of them. Suppose we commit the race
on y. In the second diagram we show the only execution that uses this data
race; the committed actions are in brackets and the committed read sees the
value of (the write in) the data race. The non-committed read sees the write
that happens-before it, i.e., the default write. This execution gives the result
rl1 =0 and r2 = 1. The JMM can again decide to commit a data race from
the execution. There is only one such data race. Committing the data race on
x gives the last diagram, and results in r1 = r2 = 1.

Complex optimisation. The program



initially x =y = 0

rl :=x r2 =y
if (r1 !'= 0) X =12
y :=rl ’
else
y =1

can result in r1 = r2 = 1 using a committing sequence that is very similar to
the previous program. First we commit the race on y and then the race on x
with value 1. Note that the actions are not tied to instructions in any way—the
write to y is first committed using the else branch, but it is executed by the
then branch in the final execution.

Although it might seem counter-intuitive, this behaviour could be the out-
come of a compiler optimisation. The compiler may realise that the only values
in the program are 0 and 1; that the first thread can never write 0 to y; thus it
must write 1. As a result, it could replace the if statement with an assignment
y:=1. Then it could reorder this with the statement r1:=x, giving the program:

y :=1 r2 :=y
rl := x X =12

After the reordering we can get r1 = r2 =1 from a SC execution.

4 Bad executions

The JMM aims to prohibit out-of-thin-air behaviours, which are usually demon-
strated by program C from Fig. 1.

It contains a causality loop, which potentially could explain any value being
written and seen by r1. But the JMM prohibits the result r1 = 1, for example,
because we can only commit a race with the value 0. Even after restarting, all
reads must see the value 0, because the non-committed ones can only see the
default writes, and the committed ones were committed with value 0.

Another powerful tool for determining (in)validity of executions is the DRF
guarantee. For example, this program (from [6]):

initially x = y = 0
rl :=x r2 :=y
if (r1>0) y := 42 if (r2>0) x := 42

is data race free and thus it cannot be that r1 = 42, because the writes of 42
do not occur in any sequentially consistent execution.

5 Ugly executions

Here we give examples that either show a bug in the JMM, i.e., behaviours that
should be allowed but they are not, or behaviours that are surprising.

1. Reordering of independent statements. The first example (from [2])
demonstrates that it is not the case that any independent statements can be
reordered in the JMM? without changing the program’s behaviour:

2In [1], we suggest a weakening of the legality definition that fixes this problem while
preserving the DRF guarantee.



x=y=2z=0

rl:=z r2:=x

if (r1==1) {x:=1; y:=1} r3:=y
else {y:=1; x:=1} if (r2==1 &% r3==1)

z:=1

Can we get r1 = r2 = r3 = 17 This requires that each register read sees a
write of 1. The only way to commit a data race on z with value 1 is to commit
the races on x and y with values 1, so that the write z:=1 is executed. Note
that the writes to x and y are committed in the else branch, and the write to
y happens-before the write to x. However, once we commit the data race on z,
the first thread must execute the then branch in the restarted execution, which
violates the requirement on preservation of ordering of the committed actions.
So this outcome is impossible.

If we swap the statements in either branch of the if statement so they are
the same, we can justify the result r1 = r2 = r3 = 1. This demonstrates that
independent instruction reordering introduces a new behaviour of the program,
and so is not a legal transformation in general. This falsifies Theorem 1 of [6].

2. Reordering with external actions. Another counterexample to Theo-
rem 1 of [6] shows that normal statements cannot be reordered with “external
statements” (i.e. those which generate external actions such as I/O operations).

x=y=0
ri:=y r2:=x
if (r1==1) y:=r2
x:=1
else {print "!"; x:=1}

Here, the result r1 = r2 = 1 is not possible, because we must commit the
printing before committing the data race on x3. However, after swapping the
print with x:=1 in the else branch, we can get the value 1 in both the registers
by committing the race on x followed by committing the race on y. As a result,
this reordering is not legal. A fix to this problem has not been proposed yet.*

3. Roach motel semantics. A desirable property of the memory model is
that adding synchronisation to a program could introduce deadlock, but not
any other new behaviour. A special case is “roach motel semantics” ([7]), i.e.,
moving normal memory accesses inside synchronised regions. Another case is
making a variable volatile. We now show examples falsifying the claim that the
JMM ensures this property.

First, note that this program

3By rule 9 of legality, Def. 7 in the Appendix.
4The apparent fix is to drop rule 9; the consequences of this are unknown, although DRF
will be preserved.



Lm) Lm) TR0 L)~ L(m) L(m)
1 b } ) 1
W(z,2) L(m (z,2) W(z,0) W(z,2) W(;ﬁ7 1) R(::;7 1)

) R
A A b A
U(m) Wz, 1) I%(z70)f' U(m) U(m) [R(z,1)]
A p s A
U(m) Wiy, 1) W (y,1)]
A A

U(m)
A. B.

Figure 3: Justifying and final executions for the roach motel semantics coun-
terexample.

initially x =y =z = 0
lock m lock m rl :=x r3 =y
X = 2 x =1 lock m z: =713
unlock m unlock m r2 := z
if (r1 == 2)
y :=1
else
y :=r2
unlock m

cannot result in r1 = r2 = r3 = 1, because the only way to get a write of 1 into
y is to commit the data race on x with value 2. Once we commit the read of 2
from x, the read of x must always see value 2 and the register r1 must be 2 in
any subsequent execution, so we cannot have r1 = 1 in the final execution.

However, if we move the assignment ri:=x inside the synchronised block,
we can construct an execution where x:=2 happens-before r1:=x using the syn-
chronisation on m, and rl:=x sees value 2 (see execution A from Fig. 3). From
this execution, we can commit the data race on y with value 1 without com-
mitting the read of x. Then we can restart and commit the data race on z
with value 1, and after another restart of the execution, we let the read of x see
value 1 (execution B from Fig. 3). As a result, we introduce a new behaviour
rl1 =12 =1r3 =1 after moving a normal access into a synchronised block.

Using the same reasoning, if x is volatile, we can also get r1 =r2=r3=1
even if r1:=x is outside the synchronised block. This demonstrates that making
a variable volatile can introduce new behaviours other than deadlock.

4. Reads affect behaviours. In the JMM, reads can affect an execution in
perhaps unexpected ways. Unlike an interleaved semantics, removing a redun-
dant read from a program, such as replacing r:=x;r:=1 by r:=1 can decrease
observable behaviours, because the read of x might have been previously com-
mitted and it must be used. As a result, introducing redundant reads to a
program is not a legal program transformation.

To demonstrate this, consider the program



x=y=2z=0

rl := z x :=1
if (r1==0) r2 =y
{3 :=x z 1= 12
if (r3==1) y := 1}
else { rd4 :=x
r4d := 1
y :=rl }

and the outcome r1 = r2 = 1. This is a possible behaviour of the program—we
can commit the race on x between r3:=x and x:=1, then the race on y between
y:=1 and r2:=y, and finally the race on z with value 1 to get the result. But if
we remove the (redundant) read r4:=x, we cannot keep the committed race on
x after we commit the race on z with value 1.

5. Causality tests. In [8], the causality tests 17-20 are wrong—they are
not allowed in the JMM contrary to the claim. We illustrate the problem on
causality test 17 (all tests are an instance of one problem and we suggest a fix

in [1]):

x=y=0
r3 :=x r2 =y
if (r3 !'= 42) X =12
x = 42
rl :=x
y :=rl

The causality test cases state that r1 = r2 = r3 = 42 should be allowed, because
the compiler might realize that no matter what is the initial value of variable
x in the first thread, r1 will always be 42, and it can replace the assignment
by r1 := 42. Then we can get the desired outcome by simple reordering of
independent statements. However, there is a subtle bug in the memory model
and it does not allow this behaviour (see [1] for more details). This is because
rule 7 of legality (Def. 7) is too strong—it requires the reads being committed
to see already committed writes in the justifying execution.

One of the causality tests also answers an interesting question: can we always
commit actions one-by-one, i.e., each commit set having one more element than
the previous one? The answer is negative, as illustrated by the causality test 2:

x=y=0
rl :=x r3 :=y
r2 := x x :=1r3
if (r1 == r2)
y :=1

To get r1 = r2 =r3 = 1, we must commit both reads of x at the same time.

6. Sequential consistency and lock exclusivity. Our next example exe-
cution is considered sequentially consistent by the JMM but does not reflect an
interleaved semantics respecting mutual exclusion of locks. The JMM says that
an execution is sequentially consistent if there is a total order consistent with



the execution’s program order such that each read sees the most recent write
in that order. In [1], we show that this does not capture interleaved semantics
with exclusive locks, demonstrated in this program:

initially x =y =z =0

rl =y lock m lock m

x :=rl r2 := x y =1
z =1 r3 =z
unlock m unlock m

By the JMM, it is possible to get r1 = r2 = r3 = 1, using the total order lock
m, lock m, y:=1,rl:=y, x:=rl, r2:=x,z:=1, r3:=2z, unlock m, unlock m. It is
not hard to show that this the only order of reads and writes that is consistent
with the program order and the reads see only the most recent writes in that
order. However, this order does not respect mutual exclusion of locks. We be-
lieve, therefore, that sequential consistency ought to require existence of a total
order consistent with both the program order and the synchronisation order. In
[1], we have proved that the DRF guarantee also holds for this definition of SC.

7. Default writes and infinite executions. The writes of default values
to variables introduce inconsistencies and surprising behaviours in the JMM.
We noted earlier that the definition of the happens-before relation is flawed
when default writes are considered carefully. Possible fixes, either by making
default writes into synchronisation actions, or by forcing the initialisation thread
to finish before all other threads start, conflict with infinite executions and
observable behaviours in a subtle way.
For example, any infinite execution of the program (from [1]):

while(true) { new Object() { public volatile int f; }.f++; }

must initialize an infinite number of volatile variables before the start of the
thread executing the while loop. Then the synchronisation order is not an omega
order, which violates the first well-formedness requirement. So the program
above cannot have any well-formed execution in Java.

A related problem arises with the notions of observable behaviour and “hung”
program given in [7]: in the program that precedes the above loop with an ex-
ternal action, there can only be a finite observable behaviour but the criteria for
being “hung” are not met. Because of this, we suggest to restrict the executions
to finite ones, and exclude the default write actions from observable behaviours.

8. Well-behaved executions and SC. For justifying legal executions, the
JMM uses “well-behaved executions” [6, Section 1.2]. These are executions
with certain constraints, in particular, that each read sees a most recent write
in the happens-before order. It might be interesting to examine the relationship
between the well-behaved executions and the sequentially consistent executions.

Lemma 2 of [6] says that for correctly synchronised programs, an execution
is sequentially consistent if and only if it is well-behaved.

However, the following two examples show that these two notions are incom-
parable for general programs. First, consider the program




and its execution, where r1 = 1. This is sequentially consistent, but not well-
behaved.
On the other hand, the program

lock ml lock m2
y =1 y =2
x :=1 X = 2
unlock mil unlock m2
lock m2 lock mil
rl := x r2 :=x
r3 :=y r4d :=y
unlock m2 unlock ml

has a well-behaved execution, where r1 = r4 =1 and r2 = r3 = 2. This result
is not possible in any SC execution.

6 Conclusions

We have collected together and explained a set of typical examples for the Java
Memory Model, including those good and bad programs used to motivate the
definitions, and a set of ugly programs which cause problems for the present
JMM definitions. Our aim was to summarise the status of the current JMM, as
we understand it, and at the same time make some of the technicalities more
accessible than they are in other accounts.

We have explained the examples at a slightly informal level, giving an in-
tuitive description of the checking process one can use to explain why some
example is possible (by explaining the commit sequence), or argue why some
example is impossible (by explaining that no commit sequence with the desired
outcome is possible). We explained the commit sequences in terms of what
happens for data races, which is the essential part of the process; this fact is
mentioned in Manson’s thesis [5] but not easily gleaned from the text or defini-
tions in other published accounts [6, 3].

The ugly cases are the most interesting; clearly something must be done
about them to gain a consistent account. The first hope is that the JMM defini-
tions can be “tweaked” to fix everything. We have suggested several tweaks so
far. But, because the definitions have some ad hoc aspects justified by examples
on a case-by-case basis, it isn’t clear that it is possible to revise the definitions
to meet the case-by-case examples of allowed and prohibited examples, while
at the same time satisfy the global property of enabling all easily detectable
optimisations of certain kinds. Further examination is required, but it may
be that beginning from more uniformly derived semantic explanations (such as
the approach of Cenciarelli et al [2]) is a better approach for achieving a more
tractable definition.

Although we (naturally!) believe that our own explanations of the examples
are accurate, the definitions are quite intricate and other people have made mis-
takes — perhaps some of the corner cases (such as the causality tests) were valid
in previous versions of the model but became broken as it evolved. Therefore it
is an obvious desire to have a way to check examples formally and automatically
against memory model definitions; in future work we plan to investigate model
checking techniques for doing this.
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Related work. We have cited the source of examples and made some com-
parisons in the text; the papers in the bibliography also contain ample further
pointers into the wider literature on memory models. The key starting point for
understanding the present Java Memory Model is the draft journal paper [7].
During the development of the present memory model, many examples have
been discussed on the mailing list, as well as in the test cases [8, 9].
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A Precise JMM definitions

The following definitions correspond to those in [3, 6], but are mildly reformu-
lated to match the way we have studied them in [1]. We use 7 for the set of
thread identifiers, ranged over by ¢; M for synchronisation monitor identifiers,
ranged over by m; L for variables (i.e., memory locations), ranged over by v
(in examples, x, y, etc.); and V for values. The starting point is the notion of
action.

Definition 1 (Action) An action is a memory-related operation; each action
has the following properties: (1) Each action belongs to one thread, denoted
T(a). (2) An action has one of the following action kinds:

e volatile read of v € L, e normal read from v € L,
e volatile write to v € L, e normal write to v € L,
e lock on monitor m € M, e external action.

e unlock on monitor m € M,

An action kind includes the associated variable or monitor. The volatile read,
write, lock and unlock actions are called synchronisation actions.

Definition 2 (Execution) An execution E = (A, P, <,,, <50, W, V), where:
o AC A is a set of actions,
e P is a program, which is represented as a function that decides validity of

a giwen sequence of action kinds with associated values if the action kind
is a read or a write,

the partial order <,,C A x A is the program order,
e the partial order <;,C A x A is the synchronisation order,

e W e A= A is a write-seen function. It assigns a write to each read
action from A, the W(r) denotes the write seen by r, i.e. the value read
by r is V(W (r)). The value of W (a) for non-read actions a is unspecified,

e Ve A=YV is a value-written function that assigns a value to each write
from A, V(a) is unspecified for non-write actions a.

Definition 3 (Synchronizes-with) In an execution with synchronisation or-
der <., an action a synchronises-with an action b (written a <5, b) if a <5, b
and a and b satisfy one of the following conditions:

e a is an unlock on monitor m and b is a lock on monitor m,

e a is a volatile write to v and b is a volatile read from v.

Definition 4 (Happens-before) The happens-before order of an execution
is the transitive closure of the composition of its synchronises-with order and its
program order, i.e. <pp= (<gp U <po)T.

Definition 5 (Sequential validity) We say that a sequence s of action kind-
value pairs is sequentially valid with respect to a program P if P(s) holds.
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Definition 6 (Well-formed execution) We say that an execution (A4, P, <,,,
<s0, W, V) is well-formed if

1. <, restricted on actions of one thread is a total order, <,, does not relate
actions of different threads.

<so 18 total on synchronisation actions of A.
<so @8 an omega order, i.e. {y | y <so x} is finite for all x.

<so 15 consistent with <p,, t.e. a <40 bAb<p, a = a=0.

Sro

W is properly typed: for every non-volatile read r € A, W(r) is a non-
volatile write; for every volatile read r € A, W(r) is a volatile write.

6. Locking is proper: for all lock actionsl € A on monitors m and all threads
t different from the thread of I, the number of locks in t before | in <5, is
the same as the number of unlocks in t before | in <,.

7. Program order is intra-thread consistent: for each thread t, the sequence
of action kinds and values® of actions performed by t in the program order
<po 18 sequentially valid with respect to P.

8. <so 18 consistent with W: for every wvolatile read r of a variable v we
have W (r) <, r and for any volatile write w to v, either w <, W(r) or
r <50 W.

9. <pp is consistent with W: for all reads v of v it holds that v £Lp, W(r)
and there is no intervening write w to v, i.e. if W(r) <pp w <pp r and w
writes to v then® W(r) = w.

Definition 7 (Legality) A well-formed execution (A, P, <o, <s0, W, V) with
happens before order <pp is legal if there is a “committing” sequence of sets of
actions C; and well-formed “justifying” executions E; = (A;, P, Zpo;s Zso:s Wi, Vi)
with happens-before <pp, and synchronises-with <g,,, such that Co =0, C;_1 C
C; for alli >0, |JC; = A, and for each i > 0 the following rules are satisfied:

1. C; C A;.

2. <wp, lo; = < lo;-

3. <so; lov = Zsoloy-

4. Vile, = Ve,

5. Wile,, = Wle,_, .

6. For all reads r € A; — C;—1 we have Wi (r) <pp, r.

7. For all reads r € C; — C;—1 we have W;(r) € Ci—1 and W(r) € C;_1.

5The value of an action a is V(a) if a is a write, V(W (a)) if a is a read, or an arbitrary
value otherwise.

6The Java Specification omits the part “W (r) = w”, which is clearly wrong since happens-
before is reflexive.
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8. Let’s denote the edges in the transitive reduction of <pp, without all edges
in <po, by <ssw,. We require that if v <gsw, Y <np, 2 and z € C; — C;_1,
then x <, y for all j > i.

9. If x is an external action, x <pp, y, and y € C;, then x € C;.

Note that although the definition of legality does not mention the term “well-
behaved execution” directly, rule 6 of legality ensures that the first justifying
execution F; is well-behaved.

Definition 8 (Sequential consistency) An ezecution is sequentially consis-
tent if there is a total order consistent with the execution’s program order and
synchronisation order such that every read in the execution sees the most recent
write in the total order.

Definition 9 (Conflict) An execution has a conflicting pair of actions a and
b if both access the same variable and either a and b are writes, or one of them
is a read and the other one is a write.

Definition 10 (DRF) A program is data race free if in each sequentially con-
sistent execution of the program, for each conflicting pair of actions a and b in
the execution we have either a <pp b or b <pp a.
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