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Overview 

  EnCore is an embedded soft-core processor developed in the
 PASTA project – so first an introduction to the project… 

  Aims, goals and key results from the PASTA project 

  Architecture of the EnCore family 

  Implementation results 

  Multi-core versions of EnCore 

  Summary 
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Aims and Goals of the PASTA Project 

“Rapid, automated creation of high-performance, 
energy-efficient, application-specific processors” 

  The PASTA project began in September 2006, funded by a research grant 
from EPSRC. Since then the group has grown to team of 10 researchers, 
addressing a range of research topics in architecture and compiler 
synthesis 

  Primary innovations are: 
–  Automated processor customization 
–  Automated exploration of many design options 
–  Applying statistical methods to allow tools to ‘learn’ how to optimize 
–  Co-design of both the processor and its compiler 

  Many tradeoffs involve CPU implementation, so we created EnCore 
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Why a New Approach to Processor Design? 

  Moore’s Law increases transistor counts at an exponential rate 
  Transistor count doubles at each new technology node (130nm, 90nm, 

65nn, 45nm, 32nm, etc) 
  Chips with more than 1 billion transistors feasible today 
  Set to continue until ~2016 

  Using the additional resources effectively is a big design problem: 
–  How to get best performance from a given silicon area? 
–  How to increase performance while decreasing energy usage? 

  Basically too many design options, leading to complex trade-offs 
  In the past, human designers could handle the complexity 
  Now, we need smart design tools to navigate the complexity 

–  Low-level choices have high-level impact – must be predicted 
–  Prediction requires tools that learn about the design space 
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Learning how to Optimize Processors 

  Instruction Set extensions have been around for some 
time, so what’s different here? 

  Extendable architectures create a huge space of design 
choices in architecture and implementation 

  Most prior methods involve heuristics which yield a single 
solution; this is not what we want… 

  Our goals are:  
–  To expose the design spaces through parametric algorithms 
–  To develop statistical methods for learning how to quickly 

find good solutions from within those design spaces 

  Tools become “expert designers” 
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Research Activities in the PASTA Project 

  Application-specific processor synthesis  

  Exploring the trade-off space in microarchitecture 

  Compiling for customized processors 

  High-speed processor simulation 

  HW-SW co-design for energy efficiency 

  Self-adaptive microarchitecture for energy efficiency 

  Proof-of-concept microprocessor implementation (EnCore) 

  … will summarize results from a few of these 
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Application-specific Processor Synthesis 
  Extension instructions map to a 

Configurable Function Accelerator 

  Design space of feasible CFAs is 
searched automatically, under 
constraints of die area 

  Resulting solutions are examined to 
see how additional area leads to: 

–  Performance improvements 

–  Energy reductions 
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Exploring the Trade-off Space in Microarchitecture 

  100’s of extra instructions may be 
added to the processor 

  Similar functional units will appear 
in many instructions 

  Small number of instructions will be 
active at any instant 

  Therefore, try to share the logic 
between disjoint instructions 

  Maximum resource sharing leads to 
maximum slow-down 

  Maximum speed achieved at 
minimum resource sharing 

  Thousands of points in the design 
space, defining a Pareto curve. 
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Graph showing trade-off between speed and die 
area when sharing resources across extension 
instructions  

http://groups.inf.ed.ac.uk/pasta/rareas_rshare.html 
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High-speed Processor Simulation 
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  Training of statistical performance 
predictors requires high-speed 
simulation 

  Developed fast simulator based 
on just-in-time binary translation 

  Simulates full system at 450 MIPS 

  Licensed to ARC in 2007 

  Now released as a commercial 
simulation tool 

  New cycle-approximate models 

–  Max. error < 2% 

–  Only a small slowdown 
http://groups.inf.ed.ac.uk/pasta/rareas_fastsim.html 
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The EnCore Processor Family 

  Design status 
–  Based on ARCompact ISA for embedded applications 
–  Implemented as configurable Verilog IP libraries 
–  5 and 7 stage versions of the microarchitecture (EC5 and EC7) 

  Configurability 
–  Pipeline depth (I.e. 5 or 7 stages) 
–  I-cache and D-cache (capacity, ways, associativity,…) 
–  Extended instruction set 
–  Various microarchitectural options (instruction packs) 

  Tools 
–  Fast simulation: dynamic binary translation and/or predictive 
–  Co-simulation: Verilog core + fast simulator 
–  Extension instruction generation tool 
–  Extension microarchitecture synthesis tool 

•  Two versions – one static, the other dynamically reconfigurable 
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  Fetch and align happen in stage 1 
•  Ready to perform branch in Decode stage 

  Decode, read registers, and select operands in stage 2 
•  Select operand from reg-file, short/long immediate, late-arriving bypass 
•  Zero branch cost (with delay-slot or if branch not-taken) 

  Execute ALU operations in stage 3 
•  Optimized forwarding network, split across stages 2 and 3 

  Access data cache or perform min, max, abs operations in stage 4 (commit decision) 
•  No stalls between most non-memory instructions 

  Write register file and architectural state in write-back stage 
•  One load-delay slot 
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The EnCore “Calton” test chip 
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  All chips named after hills in Edinburgh 

  Calton Hill is the smallest… 

  Baseline CPU core is efficient: 
–  5-stage pipeline, 1.45 DMIPS / MHz 
–  Configurable RTL (caches etc.) 
–  24 kgates 
–  250 MHz worst-case, 130G process 
–  70 uW / MHz, 130G process, inc RAM 

  `Calton’ test chip taped out Nov. 2008 
–  UMCL130 FSG HS 
–  1 sq.mm active area 
–  RTL to GDSII (in-house design flow) 
–  375 MHz in 0.13um (slow, free libs) 
–  90 uW/MHz dynamic power (chip level) 
–  100% functional in first silicon! 
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Packaged EnCore `Calton’ Test Chip 

•  Chip Scale Packaging 

•  7 x 7mm QFN-48 

•  5p coin shown for scale 

•  100% packaging yield 

•  Designed & built PCB  

•  Running code compiled by our 
compiler 

•  Fabricated an enhanced 
version of EC5, with higher 
performance architecture in 
May 2009 

•  Enhanced devices received 
back in October 2009, these 
devices were also functional 
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Hardware Emulation Environment 

  Dual FPGA configuration,
 based on Xilinx ML507 with
 Xilinx Virtex-5 FPGA 

  FPGA-1 runs EnCore SoC 
  FPGA-2 runs chipset 

  Identical interconnections to
 those used by test chips
 post-manufacturing 

  Allows functional verification
 at 75 MHz prior to tape out 

  Allows experimentation 
  Allows for compiler testing in

 real-time conditions 
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Chip-testing environment 

  Uses Xilinx ML507 board 
  Custom daughter board 
  Test socket for MO220 

  JTAG link to host 

  Xirtex-5 implements the
 rest of the system 

–  Main memory 
–  Graphics 
–  AC97 audio 
–  Etc. 

  Re-usable for future
 devices 
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Vital Statistics of EnCore 
Feature EnCore 130nm (speed opt) ARM Cortex M3 130nm (speed opt) 

Core size (baseline) 0.15 mm2 0.43 mm2 

DMIPS / MHz 1.45 (single issue) 1.25 (single issue) 

Power consumption (250 MHz) 0.070 mW / MHz (Fmax = 250 MHz) 0.140 mW / MHz (Fmax = 135 MHz) 

  Core sizes exclude RAM area 
  EnCore power measurements include cache RAM power 
  ARM data from ARM website (also believed to exclude RAM area) 
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Feature EnCore 90nm (speed opt) ARM Cortex M3 90nm (speed opt) 

Core size (baseline) 0.071 mm2 0.210 mm2 

DMIPS / MHz 1.45 (single issue) 1.25 (single issue) 

Power consumption (350 MHz) 0.024 mW / MHz (Fmax = 420 MHz) 0.070 mW / MHz (Fmax = 191 MHz) 

Silicon proven  
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Feature EnCore 65nm (Low Power) ARM Cortex M3 65nm 

Core size (baseline) 0.037 mm2 N/A 

DMIPS / MHz 1.45 1.25 (dual issue) 

Power consumption (400 MHz) 0.012 mW / MHz (Fmax = 500 MHz) N/A 

In fabrication  

Projected 



90nm EnCore chip with Extensions – “Castle” 

  EnCore baseline CPU 
  32KB 4-way I-cache and D-cache 
  32-bit external bus interface 

  Includes CFA accelerator 
–  Dynamically reconfigurable extensions 
–  Optimized for audio decode 

  UMC 90nm process, 8LM 
  Faraday free libraries 
  580 MHz (sampled from typical Si) 
  350 MHz (worst-case PVT) 
  56 uW / MHz (extended core, inc. RAM) 
  1.875 x 1.875 mm die 

  Submitted for fabrication October 2009 
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130nm 

Projections to 65nm and Beyond 

  At 65nm a quad-core EnCore system fits into same 1 sq.mm of current 130nm single-core 

  16-cores are possible in 1 sq.mm at 32nm 

  Energy efficiency grows with each new technology node, for tiny processors such as 
Encore 

–  Localized signalling = short wires = low switching capacitance 

–  This is where parallelism achieves a big win 

–  Energy-efficient throughput computing through many-core devices 

  Virtual memory in development - able to run Linux on next 65nm Quad Core chip 
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Future Research / Application Potential 

  Green Computing 
–  Low energy ubiquitous devices 

–  Extensions ease load on CPU, reducing energy consumption 

  Security, Encryption, Smartcards, RFID devices 
–  Low energy ideal for embedded, mobile, smartcard / active RFID applications 

–  Customization provides barrier to hackers 

–  Extensions allow fast, efficient bit-level algorithms 

  Medical 
–  Implantable devices enabled by low energy use and relatively high performance 

achievable through customization 

  Many-core Throughput Computing – e.g. web server farms 
–  Customize the processor for search algorithms 

–  Put 128 cores on a chip, run at 600 MHz, consume 2 Watts 

–  100,000 DMIPS 

–  DMIPS comparable with 16 Intel Core2 processors running at 3 GHz 
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EnCore 7-stage pipeline overview 

  Pre-dates EnCore 5-stage pipeline 
  Implements same set of instructions as EnCore 5 
  Shares many modules in common with EnCore 5 
  Decode is pipelined across two stages 

  Achieves higher frequency - 550 MHz (worst case) at 90 G 
  30% more silicon area than EC5 
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Summary 

  PASTA project has demonstrated key technology advances in: 
–  Energy saving through customization 

–  Resource sharing in processor extensions 

–  Exploring the vast design space of processor customization 

  It is feasible to build real processors in academia ! 

  Developed a highly efficient microprocessor 
–  Proven in silicon 

–  Extensible 

–  Baseline EnCore is competitive 

  Developed matching compiler technology 

  90nm test chip now in the fab. 

  Excellent core for energy-efficient multi-core systems 

  Thanks to the whole PASTA team ! 
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