Cookie Control

This site uses cookies to store information on your computer.

Some cookies on this site are essential, and the site won't work as expected without them. These cookies are set when you submit a form, login or interact with the site by doing something that goes beyond clicking on simple links.

By using our site you accept the terms of our Privacy Policy.

(One cookie will be set to store your preference)
(Ticking this sets a cookie to hide this popup if you then hit close. This will not store any personal information)

About this tool

About Cookie Control

You are here

Historical Interest Only

This is a static HTML version of an old Drupal site. The site is no longer maintained and could be deleted at any point. It is only here for historical interest.

Automatic Extraction of the Optic Disc Boundary for Detecting Retinal Diseases

TitleAutomatic Extraction of the Optic Disc Boundary for Detecting Retinal Diseases
Publication TypeConference Paper
Year of Publication2013
AuthorsHaleem, MS, Han, L, Li, B, Nisbet, A, van Hemert, J, Verhoek, M
Conference Name14th {IASTED} International Conference on Computer Graphics and Imaging (CGIM)
Publisher{ACTA} Press
EditorLinsen, L, Kampel, M
Keywordsretinal imaging
Abstract

In this paper, we propose an algorithm based on active shape model for the extraction of Optic Disc boundary. The determination of Optic Disc boundary is fundamental to the automation of retinal eye disease diagnosis because the Optic Disc Center is typically used as a reference point to locate other retinal structures, and any structural change in Optic Disc, whether textural or geometrical, can be used to determine the occurrence of retinal diseases such as Glaucoma. The algorithm is based on determining a model for the Optic Disc boundary by learning patterns of variability from a training set of annotated Optic Discs. The model can be deformed so as to reflect the boundary of Optic Disc in any feasible shape. The algorithm provides some initial steps towards automation of the diagnostic process for retinal eye disease in order that more patients can be screened with consistent diagnoses. The overall accuracy of the algorithm was 92% on a set of 110 images.

DOI10.2316/P.2013.797-015