You are here

Historical Interest Only

This is a static HTML version of an old Drupal site. The site is no longer maintained and could be deleted at any point. It is only here for historical interest.

Lesion Area Detection Using Source Image Correlation Coefficient for CT Perfusion Imaging

TitleLesion Area Detection Using Source Image Correlation Coefficient for CT Perfusion Imaging
Publication TypeJournal Article
Year of Publication2013
AuthorsZhu, F, Rodríguez, D, Carpenter, TK, Atkinson, MP, Wardlaw, JM
Journal TitleIEEE Journal of Biomedical and Health Informatics
Volume17
Issue5
Pages950 - 958
Journal Date09/2013
ISSN2168-2194
Other Numbers10.1109/JBHI.2013.2253785
KeywordsCT , Pattern Recognition , Perfusion Source Images , Segmentation
Abstract

Computer tomography (CT) perfusion imaging is widely used to calculate brain hemodynamic quantities such as Cerebral Blood Flow (CBF), Cerebral Blood Volume (CBV) and Mean Transit Time (MTT) that aid the diagnosis of acute stroke. Since perfusion source images contain more information than hemodynamic maps, good utilisation of the source images can lead to better understanding than the hemodynamic maps alone. Correlation-coefficient tests are used in our approach to measure the similarity between healthy tissue time-concentration curves and unknown curves. This information is then used to differentiate penumbra and dead tissues from healthy tissues. The goal of the segmentation is to fully utilize information in the perfusion source images. Our method directly identifies suspected abnormal areas from perfusion source images and then delivers a suggested segmentation of healthy, penumbra and dead tissue. This approach is designed to handle CT perfusion images, but it can also be used to detect lesion areas in MR perfusion images.