Cookie Control

This site uses cookies to store information on your computer.

Some cookies on this site are essential, and the site won't work as expected without them. These cookies are set when you submit a form, login or interact with the site by doing something that goes beyond clicking on simple links.

By using our site you accept the terms of our Privacy Policy.

(One cookie will be set to store your preference)
(Ticking this sets a cookie to hide this popup if you then hit close. This will not store any personal information)

About this tool

About Cookie Control

You are here

Historical Interest Only

This is a static HTML version of an old Drupal site. The site is no longer maintained and could be deleted at any point. It is only here for historical interest.

V-BOINC: The Virtualization of BOINC

TitleV-BOINC: The Virtualization of BOINC
Publication TypeConference Paper
Year of Publication2013
AuthorsMcGilvary, G, Barker, A, Lloyd, A, Atkinson, M
Conference NameIn Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2013).
Conference Start Date13/05/2013
Conference LocationDelft, The Netherlands
Abstract

The Berkeley Open Infrastructure for Network Computing (BOINC) is an open source client-server middleware system created to allow projects with large computational requirements, usually set in the scientific domain, to utilize a technically unlimited number of volunteer machines distributed over large physical distances. However various problems exist deploying applications over these heterogeneous machines using BOINC: applications must be ported to each machine architecture type, the project server must be trusted to supply authentic applications, applications that do not regularly checkpoint may lose execution progress upon volunteer machine termination and applications that have dependencies may find it difficult to run under BOINC.

To solve such problems we introduce virtual BOINC, or V-BOINC, where virtual machines are used to run computations on volunteer machines. Application developers can then compile their applications on a single architecture, checkpointing issues are solved through virtualization API's and many security concerns are addressed via the virtual machine's sandbox environment. In this paper we focus on outlining a unique approach on how virtualization can be introduced into BOINC and demonstrate that V-BOINC offers acceptable computational performance when compared to regular BOINC. Finally we show that applications with dependencies can easily run under V-BOINC in turn increasing the computational potential volunteer computing offers to the general public and project developers.

V-BOINC can be downloaded at http://garymcgilvary.co.uk/vboinc.html