
Dispel Language Tutorial

Paul William Martin

July 13, 2012

Contents

1 Getting started 2
1.1 Core concepts . 2
1.2 The gateway . 3

2 Building simple workflows 5
2.1 We’ll skip ‘Hello World’ . 5
2.2 Describing workflow input . 7
2.3 Defining new types of processing element 8
2.4 Deriving new workflow elements . 10

3 Constructing more sophisticated workflows 13
3.1 Dispel Language Types . 13
3.2 Iterative workflow construction . 16
3.3 Conditional workflow construction . 19

4 Manipulating the flow of data 22
4.1 Dispel structural types . 22
4.2 Type coercions . 26
4.3 Connection modifiers . 28
4.4 Dispel domain types . 29

5 Case studies 31
5.1 The Sieve of Eratosthenes . 31

1

Chapter 1

Getting started

Dispel is a strongly-typed imperative language for generating executable workflows
for data-intensive distributed applications, particularly (but not exclusively) for use
in computational sciences such as bioinformatics, astronomy and seismology — it
has been designed to be a portable lingua franca by which researchers can interact
with complex distributed research infrastructures without detailed knowledge of the
underlying computational middleware, all in order to more easily conduct experiments
in data integration, simulation and data-intensive modelling.

Dispel was created as part of the ADMIRE project1, which sought to promote a model
for advanced data mining and integration which insulates the computational scientist
or domain expert from the specifics of how individual computational services are
implemented or how data is moved between physical resources.

1.1 Core concepts

A workflow is simply a decomposition of a task into a number of sub-procedures which,
when linked together, describe how that task can be carried out. Such workflows can
be understood in terms of data-flow, wherein the output of one sub-procedure feeds
directly into the next sub-procedure. If a task involves a continuous processing of
data over some period of time, then each sub-procedure can begin enactment as
soon as data produced by prerequisite sub-procedures starts to emerge. If these sub-
procedures can be distributed amongst a number of different actors and a means
to efficiently deliver data between actors can be provided, then the workflow can
be effectively parallelised, and results can start being produced almost immediately
regardless of the ultimate size of the base task.

A Dispel workflow is a decomposition of an application into a number of processing
elements connected together via channels though which data can be streamed. Each
processing element (PE) encapsulates some sub-procedure deemed pertinent to the
task at hand and takes some number of input connections as well as some number
of output connections. As a PE consumes data through its inputs, some operation
is performed within the element which results in a number of new streams of data

1EC Framework 7 ICT 215024 (http://www.admire-project.eu).

2

Task
Scheduler

Data
Generator

Tuple
Build

Corroborated
Query

"uk.org.UoE.dbA"

"uk.org.UoE.dbB"

"uk.org.UoE.dbC"

Tuple
Burst

TupleSchema

Type
Converter

Forecast
Modeller

TupleSchema

Warning

Results

"Forecast Results"

Figure 1.1: An example of a Dispel workflow.

produced through its outputs. The rate of data consumption and production depends
on the behaviour of the PE and its neighbouring elements.

A Dispel script describes how to construct a workflow; scripts must be executed by
an interpreter capable of mapping the resulting workflow onto a suitable enactment
platform, being a collection of services and middleware distributed onto physical re-
sources which can actually handle the execution of workflow sub-procedures. Such
an interpreter is usually provided by a remote gateway which can execute any Dispel
script submitted through it on an enactment platform provided by the (distributed)
system to which it is attached. The gateway serves to conceal the vagaries of imple-
mentation and physical topology of resources from the casual user, instead presenting
a library of PEs implementable by the enactment platform which can be enlisted in the
construction of workflows. In order to provide a common library to Dispel users, the
gateway usually defers to a central registry (though other arrangements are possible),
whilst implementation code for registered PEs on a given enactment platform is kept
in a nearby repository. Provided that a valid workflow has been submitted, a gateway
will automatically map workflow components to services and processes implemented
by the enactment platform, delegate their execution to suitable pre-configured com-
putational resources and then choreograph the execution of the distributed ‘complete’
workflow.

1.2 The gateway

In order to use Dispel, there must be a service able to interpret Dispel scripts and map
them onto an actual enactment platform. Whilst such a service can be configuration
on a user’s own machine for simple tasks, the scenarios envisaged for Dispel generally
involve submission of scripts to a remote gateway which acts as an interface onto
some kind of distributed system — such a distributed system could be a federation of
computational resources including large data archives and high-performance compute
clusters.

An ADMIRE gateway maps Dispel requests onto OGSA-DAI2 workflows — these work-
flows describe a concrete distributed implementation of the logical workflows described
by a Dispel script by replacing individual PEs with compositions of OGSA-DAI activ-
ities. An ADMIRE gateway can be stand-alone, or part of a federation of gateways; a
gateway can be configured to refer to an independently-hosted registry and repository,
or have its own in-memory private registry for stand-alone use.

2http://www.ogsadai.org.uk

3

To execute the Dispel examples given in this tutorial, you must either use an existing
gateway, or install a new one. The installation and deployment of a gateway is de-
scribed at http://sourceforge.net/apps/trac/admire/wiki/GatewayInstallation; the
ADMIRE gateway is a Java Servlet (JRE version 1.6+), typically hosted using Apache
Tomcat (version 6+). It uses a RESTful HTTP interface for the submission of Dispel
and the retrieval of workflow state.

4

Chapter 2

Building simple workflows

A basic Dispel script consists of a series of statements handling the importing of
useful processing elements from the local gateway’s registry, the instantiation and
configuration of those elements and either the registering of new composite processing
elements or the submission of a workflow to be executed by the gateway (or both).
This section shall introduce some of the core functionality of Dispel, demonstrating
how to construct simple workflows for submission.

2.1 We’ll skip ‘Hello World’

Processing elements (PEs) describe the principal components which make up any
workflow. An active gateway will provide a number of fundamental PEs which are
commonly used in various data-intensive applications; more may be added by data
analysis experts and software engineers. Such experts can also use Dispel itself to
define composite PEs, building an increasingly sophisticated array of pre-fabricated
components for users to exploit in their workflows.

Available PEs are described within the registry associated with the gateway to which
a script is submitted. We can import a PE description from the local registry by
invoking the use directive:

use dispel.db.SQLQuery;

The above command extracts a PE named dispel.db.SQLQuery from the registry; it
also imports the identifier SQLQuery into the local namespace, which means that we
can drop the prefix ‘dispel.db’ when referring to this PE within this Dispel script.
An SQLQuery converts queries written in SQL into responses returned by a selected
database. Every useful PE has some combination of input and output connections —
a few may act as sources (only outputs) and a few may act as sinks (only inputs), but
the majority will have at least one input and one output. SQLQuery has two inputs
and one output; expression (into which queries may be fed), resource (into which the
location of the database to be queried must be fed in tandem with every query) and
data (from which the results of any queries will emerge).

5

1 // Import PEs from the local registry.
2 use dispel.db.SQLQuery;

3 use dispel.core.Results;

4

5 // Create instances of PEs.
6 SQLQuery query = new SQLQuery;

7 Results results = new Results;

8

9 // Construct workflow and feed in data.
10 |-"SELECT * FROM littleblackbook WHERE id <= 10"-| => query.expression;

11 |-"uk.org.UoE.dbA"-| => query.resource;

12 |-"10 entries from the little black book"-| => results.name;

13 query.data => results.input;

14

15 // Submit the entire workflow.
16 submit results;

Figure 2.1: A simple Dispel script for submitting an SQL query.

In order to make use of any imported PE however, we must first create an instance
of the PE. A new instance can be created by use of the new directive:

SQLQuery query = new SQLQuery;

Here we are defining a PE instance named query, which is of course an instance of
the SQLQuery PE. To do anything useful, we need to connect each input of query to
a suitable data stream. Such data streams typically come from the output of other
PEs, but we can also feed in data directly from a script:

|-"SELECT * FROM littleblackbook WHERE id < 10"-| => query.expression;

|-"uk.org.UoE.dbA"-| => query.resource;

In this case, both inputs (query.expression and query.resource) read in text strings,
one describing an SQL query and the other identifying a database (in this case via
the identifier by which it is known within the distributed system associated with the
gateway).

Theoretically, this is enough to describe a ‘useful’ workflow. We need only invoke
the submit command, and the gateway will be able to provide an implementation of
SQLQuery with which to query the referenced database with the specific query given:

submit query;

Of course, since we didn’t connect the output of query to anything in particular, we
can only actually find out the result of our query if we are able to somehow inspect
query directly as it executes, which we can assume to be unlikely and undesirable.
Usually, what we want to do instead is channel the output of our workflows towards
a sink PE which can report back its input, whether (for example) by saving it to a
file in a known location or by directly visualising it using a portal widget or even
in a terminal display. So instead of simply submitting the workflow as is, we direct
the output of query towards an instance of the Results PE and submit that instead.

6

PE dispel.core.Results has two inputs — input which takes data to be recorded,
and name which associates a name with the data recorded for ease of reference. In
Figure 2.1, query.data is connected to results.input, storing the result of the given
query somewhere which can be directly accessed after the workflow is enacted. The
entire workflow is submitted by submitting results — submitting any PE instance
connected to the rest of a workflow will serve to submit that workflow, but convention
favours the ‘final’ process element.

2.2 Describing workflow input

In the previous section, we fed data into an instance of the SQLQuery PE directly, but
only fed in a single set of inputs. We did this using what is referred to as a stream
literal. A stream literal describes the content of a data stream explicitly as a sequence
of data elements drawn from the Dispel script itself, rather than as the output of a
PE instance:

|-input1, input2, ...-|

This sequence of elements can consist of any number of arbitrarily complex data
structures built from a number of elementary data types (booleans, integers, character
strings, etc.) as dictated by PE requirements and the whims of the workflow designer.
For now however, we shall concentrate on simple inputs of text strings.

It is trivial to describe a list of homogeneous inputs as a stream literal — say we want
to define not one but three queries to stream into an instance of the SQLQuery PE. We
might write the following:

String query1 = "SELECT name FROM littleblackbook WHERE id <= 10";

String query2 = "SELECT name FROM littleblackbook"

+ "WHERE id > 10 AND id <= 20";

String query3 = "SELECT address FROM littleblackbook"

+ "WHERE name = ’David Hume’";

|-query1, query2, query3-| => query.expression;

This is not enough however. An instance of SQLQuery takes not one but two inputs,
and consumes data from each input at the same rate. Thus, for each query made to
a PE instance like query, a reference to a database to query must be given. If we
wish to direct each query to a different database, then we could legitimately write the
following:

String database1 = "uk.org.UoE.dbA";

String database2 = "uk.org.UoE.dbB";

String database3 = "uk.org.UoE.dbC";

|-database1, database2, database3-| => query.resource;

If we want to direct all queries to the same database however, then it seems rather
inefficient to repeat the same string multiple times manually. Fortunately, we can use
a repeat expression to write this more elegantly:

7

1 // Import PEs from the local registry.
2 use dispel.db.SQLQuery;

3 use dispel.tutorial.PrecociousChild;

4 use dispel.core.Results;

5

6 // Create instances of PEs.
7 PrecociousChild child = new PrecociousChild;

8 SQLQuery query = new SQLQuery;

9 Results results = new Results;

10

11 // Construct workflow and feed in data.
12 child.output => query.expression;

13 |-repeat enough of "uk.org.UoE.dbA"-| => query.response;

14 |-"Adult responses"-| => results.name;

15 query.data => results.input;

16

17 // Submit the entire workflow.
18 submit results;

Figure 2.2: PE instance query takes endless input from PE instance child, whilst its
other input is locked to a single value.

|-repeat 3 of "uk.org.UoE.dbA"-| => query.resource;

In fact, if we know that we shall always be feeding the same input to a particular PE
instance, then we can use the keyword enough to essentially lock the input to a given
value no matter how much data flows through the PE instance’s other inputs:

|-repeat enough of "uk.org.UoE.dbA"-| => query.resource;

This is especially useful if other inputs are connected to the output of ‘black box’ PEs
which produce an unpredetermined volume of data for processing — see Figure 2.2
for example.

It is worth noting that in Figure 2.2, the input to results.name is not repeated — this
is because unlike instances of SQLQuery, instances of Results only read data through
their name input once. If we want query to behave in the same way, we will need to
adapt SQLQuery to better suit our purposes.

2.3 Defining new types of processing element

It might be felt that having to remember to ensure a continuous supply of identical
inputs to a PE is undesirable, and that it should be possible to configure a PE which,
for example, will always refer to the same database for a given stream of queries. It
is possible to do such a thing in Dispel by adapting the functionality of existing PEs.
These customised PEs can then be inserted into a workflow immediately, or registered
in order to be used (and reused) later.

There are two ways to adapt a PE to serve our purpose. One is to modify the

8

behaviour of the connection interfaces associated with a PE, which we shall defer
to later in this tutorial; the other is to wrap one or more PEs within a new PE. In
order to produce a new PE, it is necessary to define its abstract behaviour. Since
we consider PEs in Dispel essentially as black boxes taking in a set of inputs and
producing a set of outputs, it is only to be expected that we classify PEs by their
connections. Formally, a connection is a link between two connection interfaces —
we have made several such connections already:

child.output => query.expression;

|-repeat enough of "uk.org.UoE.dbA"-| => query.resource;

query.data => results.input;

The connection operator => connects the left interface (for example child.output) to
the interface on the right (in this case query.expression). A stream literal is therefore
an ad-hoc connection interface. Note that stream literals can only be found on the
left-hand side of connections — we cannot feed the output of a PE into a stream
literal, nor can we connect two stream literals together.

An external connection connects an output of one PE (or stream literal) to the input
of another. A given output can be connected to many different inputs, though each
input can only receive data from one source — if we wish to merge multiple outputs
into a single input, then we must use a suitable PE which knows how to interpolate
the outputs correctly, like dispel.core.Combiner. Meanwhile, an internal connection
connects all inputs of a PE to all outputs of the same PE — in other words, we can
describe a PE abstractly by the internal connection made between its interfaces with
outside data streams. Thus, when we define a PE, we define it by describing such an
internal connection in the following format:

PE(<Connection input1; Connection input2; ...> =>

<Connection output1; Connection output2; ...>);

Consequently, we can define the PE SQLQuery as so:

PE(<Connection expression; Connection resource> =>

<Connection data>);

Whilst for a source PE like PrecociousChild (used earlier in Figure 2.2):

PE(<> => <Connection output>);

Such definitions can quickly get cumbersome however, which is why we use aliases
like SQLQuery and PrecociousChild. It is possible to define new aliases by using a Type

declaration. Say that we wish to define a new PE which, like SQLQuery, reads queries
from a data stream and produces a list of responses, but unlike SQLQuery, always refers
to a specific database. We can define the abstract PE type as so:

Type SQLToTupleList is

PE(<Connection expression> => <Connection data>);

From now on, whenever we want to create a new PE which takes in an expression and
produces data, we can refer to it as a sub-type of SQLToTupleList. An SQLToTupleList

is just an abstract PE however — to have a PE which we can instantiate and use, we

9

need PEs with internal architecture which can actually be implemented using concrete
computational components. This is where the notion of a PE constructor comes in.

2.4 Deriving new workflow elements

A PE constructor is a particular type of function which returns implementable de-
scriptions of abstract PEs. Consider the constructor lockSQLDataSource:

PE<SQLToTupleList> lockSQLDataSource(String dataSource) {
SQLquery query = new SQLquery;

|-repeat enough of dataSource-| => query.resource;

return PE(<Connection expression = query.expression> =>

<Connection data = query.data>);

}

Like any other function which might be found in a functional or imperative pro-
gramming language, it has a function head and a function body. The function
head consists of a return type (in this case PE<SQLToTupleList>), a function name
(lockSQLDataSource) and an ordered set of parameters (here, only one — String

dataSource) The function body is a set of statements ending with a return direc-
tive. A function which returns a description of a PE must return a PE internal
connection which matches that of the abstract PE given in the function head (in this
case, an input expression and an output data).

In the case of lockSQLDataSource, the function describes how to make implementable
SQLToTupleList by taking a new SQLQuery instance named query, and then locking the
resource connection interface within that PE instance to the string value passed to
it. It would then simply return a version of SQLToTupleList wherein the expression

and data interfaces are attached to those of query. Using this function, successive
implementable versions SQLToTupleList can be defined by invoking lockSQLDataSource

with a suitable instance of parameter dataSource:

PE<SQLToTupleList> TutorialQuery = lockSQLDataSource("uk.org.UoE.dbA");

Having created the new implementable PE TutorialQuery, it is now possible to create
an instance of that PE and use it in a workflow:

TutorialQuery query = new TutorialQuery;

Thus a PE constructor describes how existing PEs can be used to produce a desired
composite PE which implements a given abstract PE. In this case, query is a PE
instance, an instance of TutorialQuery. Meanwhile TutorialQuery is a (rather triv-
ial) composite PE, of type PE<SQLToTupleList> — in other words, TutorialQuery is
an implementable version of the abstract PE SQLToTupleList. Thus SQLToTupleList

exists principally to describe the kind of internal connection exhibited by PEs like
TutorialQuery; the role of abstract PEs is to provide vessels into which to insert
compositions of other PEs like SQLQuery. Composite PEs will be deconstructed on
execution by the ADMIRE gateway into their constituent PEs, which will in turn be
repeatedly deconstructed until only ‘primitive’ PEs remain for which there exists con-
crete implementations. Instances of these implementations may then be distributed

10

and executed on many different resources, but to the user, there is only one top-level
PE instance to concern themselves with.

Having defined a new type of abstract PE, a constructor for making implementable
versions of that abstract PE, and then an example of such an implementable PE, it
would be helpful if those entities could be preserved for future workflows. That is the
role of the register command:

register SQLToTupleList, lockSQLDataSource, TutorialQuery;

The command register directs the ADMIRE gateway to record the given entities
within its local repository, registering their existance within that repository in its
local registry. It is possible to register not only derivative PEs, but as demonstrated,
abstract PEs and PE constructors (though not PE instances, which exist only for the
lifetime of a given workflow).

However it is not generally a good idea to register new entities without placing them
into some kind of intelligent hierarchy, so as to allow them to be easily located by
other users, and to avoid overwriting other entities which happen to share the same
name. This is done by placing entities into packages, which can themselves hold
further sub-packages. We have already encountered packages before when importing
PEs such as SQLQuery:

use dispel.db.SQLQuery;

The above directive states that PE SQLQuery resides in package db, which itself resides
in dispel (as it happens, dispel.db is the main database processing package of Dispel).

When registering new entities, we want to put them within a particular package
along with similar entities. To do this, we wrap entire Dispel scripts within package

directives:

package tutorial.example {
...

}

Any invocations of register within a given package environment will automatically be
registered within the package named (in the above example, tutorial.example). Thus,
a full Dispel script introducing new workflow components to the ADMIRE framework
will take on an appearance not unlike that of Figure 2.3. If we then wanted to make
use of TutorialQuery in another script, we need only declare the following:

use tutorial.example.TutorialQuery;

In this manner can users simplify the construction of complex workflows, either by
simplifying the use of certain standard PEs (by wrapping common configurations
of complex PEs into simpler PEs with fewer inputs) or by encapsulating complex
recurring tasks within a simple interface (by wrapping whole workflows into a single
PE definition).

11

1 package tutorial.example {
2 // Import existing PE from the registry.
3 use dispel.db.SQLQuery;

4

5 // Define new PE type.
6 Type SQLToTupleList is PE(<Connection expression> =>

7 <Connection data>);

8

9 // Define new PE constructor.
10 PE<SQLToTupleList> lockSQLDataSource(String dataSource) {
11 SQLQuery query = new SQLQuery;

12 |-repeat enough of dataSource-| => query.source;

13 return PE(<Connection expression = query.expression> =>

14 <Connection data = query.data>);

15 }
16

17 // Create new PEs.
18 PE<SQLToTupleList> TutorialQuery = lockSQLDataSource("uk.org.UoE.dbA");

19 PE<SQLToTupleList> MirrorQuery = lockSQLDataSource("uk.org.UoE.dbB");

20

21 // Register new entities.
22 register TutorialQuery, MirrorQuery;

23 }

Figure 2.3: New PEs TutorialQuery and MirrorQuery are created by locking instances
of SQLQuery to a given database.

1 // Import PEs from the local registry.
2 use tutorial.example.TutorialQuery;

3 use dispel.core.Results;

4

5 // Create instances of PEs (no import necessary).
6 TutorialQuery query = new TutorialQuery;

7 Results results = new Results;

8

9 // Connect PEI together to create workflow (no data source needed).
10 |-"SELECT * FROM littleblackbook WHERE id <= 10"-| => query.expression;

11 |-"10 entries from the little black book"-| => results.name;

12 query.data => results.input;

13

14 // Submit workflow.
15 submit results;

Figure 2.4: New PE TutorialQuery is used within a simple workflow.

12

Chapter 3

Constructing more
sophisticated workflows

So far we have only considered very simple workflows and very simple composite
PEs which are merely wrappers for only slightly more complex existing PEs. If we
want to construct more complex workflows however, we need to be able to scale
component composition to arbitrary degrees, and be able to exercise more control
over the selection of components based on circumstances at execution time. In order
to do that, we need to be able to refer to certain variable factors at execution time.
The declaration and assignment of values to variables falls into the domain of the first
of Dispel’s three type systems — the language type system. Using language types, we
can direct the iterative construction of workflows and impose conditions on certain
elements, as well as configure functions such as the constructor functions used to build
custom PEs.

3.1 Dispel Language Types

The Dispel language type system validates the variables, constants and functions used
within Dispel scripts. A variable is simply a vessel for some value. Every variable has
a language type, and its existence must be declared before use:

Integer number;

In this case, a variable number of language type Integer is declared. A variable name
must begin with an alphabetic character and contain only alphanumeric characters
or underscores (). By convention, variable names use camel-case. Variables must be
assigned an initial value before they can be used; afterwards, variables can be assigned
new values as often as desired.

Integer numberOfSources;

numberOfSources = 4;

numberOfSources = -1;

13

Typically, variables are assigned an initial value upon declaration, as so:

Integer number = 4;

Variables can only be assigned to literals or expressions of the correct language type.
Variables of language type Integer can only be assigned to integer values or expres-
sions which evaluate to integer values — if another variable is provided, then the
former variable is assigned the value of the latter variable at the point of evaluation:

Integer number = 0;

number = 3 + (-4);

number = factorial(7);

Integer square = number * number;

Dispel recognises five basic language types; Boolean, Integer, Real, String and Stream.
Each of these language types has its own valid literal type:

Boolean variables can only be assigned to one of two values; true or false:

Boolean statement1 = false, statement2 = true;

Integer variables can be assigned any positive or negative integer value, as described
above.

Real variables can be assigned any decimal value:

Real pi = 3.14, negative = -43.265;

String variables can be assigned to any character string; character strings must be
enclosed within double quotes:

String text = "";

...

text = "Hello World!"

Special characters (such as tabs, carriage returns and double quote itself) are
represented within strings by special escape characters preceded by a backslash
(\). Longer strings can be split into segments, appended using the + operator:

text = "This is the first line...\n" +

"This is the second line with text in \"quotes\".";

Stream variables can only be assigned to stream literals, as described in §2.2. Stream
literals are enclosed in stream delimiters (|- and -|) and can contain either a
comma-separated list of values (which can be literals, expressions or variables
of any of the above language types except Stream itself) or a stream expression
such as repeat:

14

Integer three = 3;

Stream empty = |--|, list = |-1, "2", three-|;

Stream repeating = |-repeat 11 of "Eleven"-|;

As with strings, stream literal fragments can be appended together using the +

operator:

Stream fragment = |-2-|;

Stream concat = |-1-| + fragment + |-3-|;

Streams represent ordered sequences, with the left-most elements preceding el-
ements to the right; concatenations of streams add to the end of the resulting
stream.

Dispel also recognises an additional language type Connection, representing a connec-
tion interface. Connection is a ‘null’ type however, its variables never holding any
value — instead connection interface ‘variables’ are simply handles for establishing
connections between interfaces as well as streams and interface. As such, variables
of type connection are simply declared and need never be assigned values, except to
other connection interfaces:

Connection input;

Stream data = |-1, 2, 3, 4-|;

data => input;

Connection alias = input;

Arrays of variables can be created by first defining the type of the array’s constituent
elements and the size of the array, and then assigning values to each individual element
of the array in turn as if it was a new variable of the relevant type:

Boolean[] array = new Boolean[3];

array[0] = true;

array[1] = false;

array[2] = true;

Arbitrarily multi-dimensional arrays can be created by creating arrays of arrays.

Integer[][] matrix = new Integer[3][2];

matrix[0][0] = 0;

matrix[0][1] = 1;

matrix[1][0] = 34;

matrix[1][1] = -3;

matrix[2][0] = -245;

matrix[2][1] = 1111;

The length of an array array can be retrieved by referencing the length property of
array:

Integer size = array.length; // = 3
Integer outerSize = matrix.length; // = 3
Integer innerSize = matrix[0].length; // = 2

15

The length of an array is always an integer.

PEs are considered to be language types as well. As such, PE instances must be
declared with a type (such as SQLQuery) and assigned a value — this will always be a
new instantiation of the given PE type, made using the new directive:

SQLQuery query = new SQLQuery;

As already described in §2.3, new types of PEs can be created using a Type declaration.
There are in fact two ways to create new PE types. The first is as shown in §2.3,
using an internal connection signature:

Type SQLToTupleList is PE(<Connection expression> =>

<Connection data>);

This must then be followed by an invocation of a suitable PE constructor in order to
provide an implementation of the abstract type, as shown in §2.4:

PE<SQLToTupleList> TutorialQuery = lockSQLDataSource("uk.org.UoE.dbA");

Another approach is to modify an existing PE type:

Type LockedSQLQuery is SQLQuery with initiator resource;

In this case, SQLQuery is modified such that its input interface resource is an initiator.
Connection modifiers like initiator are used to specify restrictions on the use of
connection interfaces, and can be used to refine how a given workflow element is
implemented upon workflow submission — for now however, we shall defer further
details until §4.3.

3.2 Iterative workflow construction

With the ability to define variables comes the ability to define iterators. Assume that
we want to create an array of parallel SQLQuery PE instances where each instance
queries a different data source, but otherwise all instances perform the same query
operation, sending the results further along the workflow. To start with, we need
to initialise the array of SQLQuery instances and provide a connection interface from
which to extract query expressions.

Connection input;

SQLQuery[] queries = new SQLQuery[numberOfSources];

We would also need an array of connection interfaces from which to acquire data
source information and another array of connection interfaces to which to send the
result (remember that we cannot simply connect multiple outputs to a single input,
but will need to use a suitable PE to combine the outputs later):

Connection[] sources = new Connection[numberOfSources];

Connection[] outputs = new Connection[numberOfSources];

16

The problem then lies with how to properly instantiate the constituent elements of
array queries and connect each PE instance to the correct inputs and output for
arbitrary values of numberOfSources. We need an iterator.

Iterators are used to repeatedly execute a block of statements whilst a given condition
holds, and as such can be used to succinctly describe repetitive workflow patterns.
Dispel supports two standard iteration constructs; while and for.

The while construct is the simplest type of iterator. At each cycle of the iterator, a
condition is evaluated, and the statement block within the loop is then executed only
if that condition evaluates as true; otherwise, execution proceeds beyond the loop.
For example:

Integer i = 0;

while (i < numberOfSources) {
queries[i] = new SQLQuery;

input => queries[i].expression;

sources[i] => queries[i].source;

queries[i].data => outputs[i];

i++;

}

Naturally if the loop is to terminate, the body of the iterator must do something
which will eventually cause the evaluation of the condition to fail — in the above
example, the statement i++ increments variable i, ensuring that eventually, i will
equal numberOfSources.

Since many iterators rely on a single control variable which is updated regularly during
each cycle of the loop however, there exists a variant of the while construct known as
a for loop. Each for loop consists of an initialisation part (where the control variable
is initialised), a conditional part (which determines when the loop should terminate),
and an update part (where the control variable is updated). For example:

for (Integer i = 0; i < numberOfSources; i++) {
queries[i] = new SQLQuery;

input => queries[i].expression;

sources[i] => queries[i].source;

queries[i].data => outputs[i];

}

In the above example, a new instance of SQLQuery is created within array queries

and connected to surrounding interfaces a number of times equal to numberOfSources.
First control variable i is initialised, which is incremented at the end of every iteration
(as directed by the statement i++) as long as the condition i < numberOfSources holds.

An interator is used in constructor makeCorroboratedSQLQuery in Figure 3.1 to imple-
ment abstract PE MulticastQuery. This particular implementation of MulticastQuery
queries multiple data sources at once, and returns the intersection of results — in
other words, it only returns results which can be corroborated by mutiple sources. It
does this using the for loop described above and an instance of PE ListIntersect to
combine the outputs of the constituent SQLQuery instances.

Note the instantiation of ListIntersect PE instance intersect in Lines 18–19 specifies
the required size of the array of inputs which it should merge:

17

1 package tutorial.example {
2 use dispel.db.SQLQuery;

3 use dispel.core.ListIntersect;

4

5 // A PE type which queries multiple sources.
6 Type MulticastQuery is

7 PE(<Connection expression; Connection[] sources> =>

8 <Connection data>);

9

10 // Use parallel SQLQuery instances to corroborate results.
11 PE<MulticastQuery>

12 makeCorroboratedSQLQuery(Integer numberOfSources) {
13 // Define aliases for workflow inputs in advance.
14 Connection expr;

15 Connection[] srcs = new Connection[numberOfSources];

16 // Create instances of internal PEs.
17 SQLQuery[] queries = new SQLQuery[sources];

18 ListIntersect intersect = new ListIntersect

19 with inputs.length = numberOfSources;

20

21 // Connect SQLQuery instances in parallel.
22 for (Integer = 0; i < sources; i++) {
23 queries[i] = new SQLQuery;

24 expr => queries[i].expression;

25 srcs[i] => queries[i].source;

26 queries[i].data => intersect.inputs[i]

27 }
28

29 // Return intersection of query results.
30 return PE(<Connection expression = expr;

31 Connection sources = srcs> =>

32 <Connection data = intersect.output>);

33 }
34

35 register MulticastQuery, makeCorroboratedSQLQuery;

36 }

Figure 3.1: A Dispel script which describes how to construct a composite PE which
queries multiple data sources simultaneously and corroborates the results.

ListIntersect intersect = new ListIntersect

with inputs.length = numberOfSources;

The use of with in this fashion can be used to specify configurable aspects of a PE
instance’s state and operation. We shall see other uses of with later in this tutorial.

18

3.3 Conditional workflow construction

In the previous section, we provided a constructor for abstract PE MulticastQuery

which returned the intersection of results. Another reasonable implementation of
MulticastQuery would be one which simply returned all results provided by all data
sources. In question then is whether or not to remove duplicate results: if we simply
want to see what results exist, we may prefer to remove duplicates; if we want to
analyse how often certain results arise, we may prefer not to.

Let us assume that we have an iterator which provides an array of SQLQuery PE
instances as described in the previous section. Assume also that we connect the
outputs of these PE instances to an instance merge of PE ListMerge, a PE which
reads a list from each of its inputs and combines them into one output list, happily
duplicating results if they appear on more than one input stream. What we want
then is to either return the output of merge unchanged, or pass that output through
an instance prune of DuplicatePrune, a PE which will remove any duplicate entries in
any list it consumes, first. We can decide this at execution-time based on a boolean
variable:

Boolean removeDuplicates;

If removeDuplicates evaluates as true, then we want prune to be inserted into our
workflow; otherwise we do not.

When statement blocks must be executed dependent upon certain conditions, we use
the if/else or switch/case constructs. A basic if conditional executes a statement
block only if a given expression evaluates as true:

if (removeDuplicates) {
DuplicatePrune prune = new DuplicatePrune;

merge.output => prune.input;

Connection output = prune.output;

}

Alternatively, an if/else conditional will execute one statement block if the condition
evaluates as true, and another if it evaluates as false:

if (removeDuplicates) {
DuplicatePrune prune = new DuplicatePrune;

merge.output => prune.input;

Connection output = prune.output;

} else {
Connection output = merge.output;

}

An if/else conditional is used in constructor makeMassSQLQuery in Figure 3.2. This
constructor, which is also based on MulticastQuery like Figure 3.1, works similarly
to makeCorroboratedSQLQuery, except that it returns all results provided by all data
sources. In addition, this function takes removeDuplicates as a parameter, a boolean
variable which determines whether or not an instance of DuplicatePrune is used within
the composite PE in order to prune out duplicate results.

It is possible to nest multiple if/else conditionals:

19

1 package tutorial.example {
2 use dispel.db.SQLQuery;

3 use dispel.core.ListMerge;

4 use dispel.core.DuplicatePrune;

5

6 // Use parallel SQLQuery instances to collect results.
7 PE<MulticastQuery>

8 makeMassSQLQuery(Integer numberOfSources,

9 Boolean removeDuplicates) {
10 // Prepare components for connection.
11 Connection expr;

12 Connection[] srcs = new Connection[numberOfSources]

13 SQLQuery[] queries = new SQLQuery[numberOfSources];

14 ListMerge merge = new ListMerge;

15

16 // Connect SQLQuery instances in parallel.
17 for (Integer i = 0; i < numberOfSources; i++) {
18 queries[i] = new SQLQuery;

19 expr => queries[i].expression;

20 srcs[i] => queries[i].resource;

21 queries[i].data => merge.inputs[i];

22 }
23

24 if (removeDuplicates) {
25 // If removeDuplicates is true, prune duplicate responses.
26 DuplicatePrune prune = new DuplicatePrune;

27 merge.output => prune.input;

28 return PE(<Connection expression = expr;

29 Connection sources = srcs> =>

30 <Connection data = prune.output>);

31 } else {
32 // Otherwise, leave as is.
33 return PE(<Connection expression = expr;

34 Connection sources = srcs> =>

35 <Connection data = merge.output>);

36 }
37 }
38

39 register makeMassSQLQuery;

40 }

Figure 3.2: A Dispel script which describes how to construct a composite PE which
queries multiple data sources simultaneously and collects the results.

20

if (dayOfTheWeek = "Monday") {
colour = "gray";

} else if (dayOfTheWeek = "Tuesday") {
colour = "yellow";

} else {
colour = "green";

}

If the nesting of if/else conditionals becomes tedious, or when there are numerous
choices for a given condition, the switch/case construct may be more useful:

switch (dayOfTheWeek) {
case "Monday" : colour = "gray"; break;

case "Tuesday" : colour = "yellow"; break;

case "Wednesday" : colour = "red"; break;

case "Thursday" :

case "Friday" : colour = "blue"; break;

default : colour = "green";

}

We use the break keyword to exit from the switch construct — otherwise execution
‘falls through’ and executes all cases until the next break statement or until the end
of the switch construct is reached (so in the above example case "Thursday" would
execute colour = "blue"). The default keyword is used to mark the special case where
none of the specified cases are satisfied.

The break keyword can be used to exit any statement block enclosed by braces ({
and }). Thus break can be used to exit an iterator. When iterators are nested, the
break keyword will only break the inner-most iterator, leaving the outer iterators to
execute as normal:

for (Integer i = 0; i < 100; i++) {
for (Integer j = 0; j < 100; j++) {
if (j == 50) { break; }

... // Statement block A.
}
... // Statement block B.

}

In the above example, the statement block A will be executed five thousand times
whilst statement block B will be executed only one hundred times. Similarly, the
continue can be used within an iterator to jump to the next iteration without breaking
out of the iterator entirely:

for (Integer k = 0; k < 100; k++) {
... // Statement block A.
if (j < 50) { continue; }
... // Statement block B.

}

In the above example, statement block A will be executed one hundred times, whereas
statement block B will only be executed fifty times.

21

Chapter 4

Manipulating the flow of data

Thus far, we have constructed workflows with little concern as to the nature of the
data being streamed between PE instances. However different PEs expect different
inputs and produce output in accordance with their own specifications. Data may
be consumed by inputs at different rates or require that data be consumed across
all inputs synchronously, perhaps requiring data to be buffered whilst waiting for
other parts of the workflow to catch up. Some PEs serve to push data through a
workflow, others serve to pull data along. Many PEs are principly driven by one
input, consuming data from other inputs only when needed — once the data-stream
into that particular input is exhausted, any continuing input from other sources may
be irrelevant. All of these factors play influence on data-intensive workflows.

In Dispel, many of these factors can be concealed from the casual user, the enactment
platform hidden behind the gateway ensuring that data is adequately streamed and
buffered across the length of an executing workflow, and ensuring that the data is
of the correct form. The standard PEs provided by Dispel are designed to behave
in the most intuitive fashion possible, so that most users will instinctively use them
correctly.

Nonetheless, control over these factors can be exercised within Dispel. Expert users
demand the ability to construct more sophisticated workflows, which require more
careful attention to the flow of data; casual users rely on expert users to resolve data
flow issues and conceal the detail behind the veil of composite PEs with simple inter-
faces. In this section we introduce the second of Dispel’s type systems, the structural
type system, which conerns itself with the logical structure of data streamed through
connections. We also introduce connection modifiers, which can be used to describe
how a PE instance consumes and produces data. Finally, we look at how to move
between the language and structural type systems using stream literals.

4.1 Dispel structural types

Structural types are purely concerned with the data flowing through connections be-
tween and within PE instances. In that respect they differ from language types, which
are principly used to guide the construction of workflows by providing variables which
control iteration, selection and the behaviour of functions. Superficially, structural

22

types are very similar to language types — we have structural types like Integer and
String — but we also have arbitrarily complex structures (involving lists and tuples
of structural types) and partial descriptions (wherein we permit lists of undefined
types or only define some of the elements in a tuple).

Conceptually, we consider a data-stream as being a sequence of data elements, each
holding a single ‘unit’ of data. However what that ‘unit’ constitutes can vary under
different circumstances — in one context, we might expect each unit to be a single
integer value, in another we might expect a list of tuples, each tuple containing multi-
ple elements. Generally, the interfaces of PEs are annotated with information about
the structure of data units streamed through them:

Type ConvertIntegerToReal is PE(<Connection:Integer input> =>

<Connection:Real output>);

It is possible to omit structural information when defining new types of PE as we
have in the past, in which case the structural type expected by each connection is
considered to be Any, meaning the data can be in any form. We can get away with
this for simple workflows, but for more complex workflows we need to be more careful.
Consider a scenario in which the following new PE type is registered:

Type Normalise is PE(<Connection input> => <Connection output>);

What is the expected input and output of Normalise? A user might be able to
infer something from the package in which Normalise is registered, but essentially
the input and output structural types can only be determined by experimentation or
searching for additional documentation. Annotating new PE types with structural
type information makes them more self-documenting and also permits the gateway
through which workflows are enacted to perform type verification and validation of a
submitted workflow prior to execution.

More complex structural types can be constructed in a number of ways. Lists can
be of any length, but each element must have the same abstract structure. A list is
defined by enclosing the structure type of the elements within the list within square
brackets as so:

Type IntListToRealList is PE(<Connection:[Integer] input> =>

<Connection:[Real] output>);

Note that connection interface type annotation only describes a single ‘unit’ of data
carried within a data stream; it is already given that a description of the content of a
stream over a set period of time is an ordered list of values. Thus if a stream outputs
a simple sequence of real numbers one after another, then the structure type of the
stream is Real not [Real]. On the other hand, if each element of the stream is itself
a list of numbers (perhaps each of different length), then the structural type of the
stream will be [Real] after all.

Conventional arrays also exist as structural types. Unlike lists, arrays can be multi-
dimensional, but must be of fixed size. At the same time, we do not concern ourselves
within Dispel with what that fixed size actually is. The reasoning behind this is that
whilst it is important to know that the output of one PE is an array, or that another
PE requires an array of certain dimensionality as input in order to validate a given
workflow, we do not need to know the size of the array because we are always merely

23

piping data from one processing element to another. An array is represented just as
for language type arrays:

Type MatrixToVectorList is PE(<Connection:Real[][] input> =>

<Connection:[Real[]] output>);

In this case, MatrixToVectorList takes as input a two-dimensional matrix of real
numbers and outputs a list of real arrays (demonstrating the combination of list and
array structural types).

The other important structural type is that of a tuple. A tuple is an unordered
collection of elements of different types. A tuple is enclosed in angle brackets, within
which must be found a sequence of typed keys to which values can be assigned:

Type GridLocToAngleLoc is

PE(<Connection:<Integer x, y; String name> gridLoc> =>

<Connection:<Real angle, magnitude; String label> angleLoc>);

Variable names must correspond to the keys used by processing elements themselves
to identify the parts of the tuple; as demonstrated above, multiple keys of the same
type can be defined together (so one can write Integer x, y; instead of Integer x;

Integer y;).

Complex structural types can be given aliases in the same manner as PE types using
an Stype declaration:

Stype GridLoc is <Integer x, y; String name>;

Stype AngleLoc is <Real angle, magnitude; String label>;

Type GridLocToAngleLoc is PE(<Connection:GridLoc gridLoc> =>

<Connection:AngleLoc angleLoc>);

What if we do not know (or care) about some or all of the structure of elements
passing through a data stream however? In that case we have at our disposal the Any

generic type and the rest identifier. An element of structural type Any can take any
shape or form, and can be used anywhere, including within arrays, lists and tuples.
Meanwhile, the rest identifier is used within tuples to encapsulate all tuple elements
not referenced prior. To illustrate:

Stype GridLoc3D is <Integer x, y, z; String name>;

Stype AbsGridLoc is <Integer x, y, z; Any name>;

Stype GridLocXZ is <Integer x, z; rest>;

In the above example, each statement matches those prior to it (though not those
after). Note that rest must be the last referenced element in a tuple, but can subsume
any of the elements within that tuple (for example, it can happily subsume element
y without subsuming element z).

Streams also have a structural type, determined by its content. This type will always
be the least common sub-type of all the data elements described within the stream:

24

Stream first = |-1, 2, 3, 4-|;

Stream second = |-"one", "two", "three", "four"-|;

Stream third = |-1, "two", 3, 4.0-|;

Stream fourth = |-<key = 11; value = "eleven">,

<key = 12; value = "twelve"; note = "2 * 6">-|;

In the above example, stream first has structural type Integer, whilst second has
type String. Stream third has structural type Any, whilst fourth has type <Integer

key; String value; rest>.

Earlier in Section 2.3 we defined a PE type SQLToTupleList. We can now annotate
that type with the correct structural types:

Type SQLToTupleList is PE(<Connection:String expression> =>

<Connection:[<rest>] data>);

The above declaration states that for each string of text representing an SQL query,
a PE of type SQLToTupleList produces a list of tuples describing a response to that
query (though we do not concern ourselves with the content of those tuples). As
a consequence, when we define PE TutorialQuery using lockSQLDataSource and then
register it, the ADMIRE gateway knows that TutorialQuery accepts only inputs of
type String and outputs a sequence of tuple lists. This means that when validating a
submitted Dispel workflow, the gateway can verify that any instance of TutorialQuery
is being fed structurally correct input and output.

It is also possible to define (or re-define) the structural type of specific instances of
PEs:

TutorialQuery query = new TutorialQuery

with data as data:[<Integer key; String value>];

This can be useful if the user knows that the data being streamed into or out of a PE
instance is limited to a particular subset of the input or output normally permitted,
and that the PE instance is to be connected to other PE instances which only permit
data limited to that particular subset:

Type DictionaryKeySort is

PE(<Connection:[<Integer key; String value>] unsorted> =>

<Connection:[<Integer key; String value>] sorted>);

DictionaryKeySort sort = new DictionaryKeySort;

query.data => sort.unsorted;

Ordinarily, this would be considered unsafe by the enactment gateway, being that
superficially TutorialQuery instances can produce data which cannot be consumed by
instances of DictionaryKeySort. Of course this approach only works if the data being
produced really is limited to the specified structural type.

What happens if the data produced by one PE instance is incompatible with the
expected input of another PE instance to which it has been connected? For example,

25

if the output of one PE is of structural type Integer whilst the expected input of
another PE is of type Real:

Type Thermometer is PE(<> => <Connection:Integer measurement>);

Type SteamEngine is PE(<Connection:Real temperature> =>

<Connection:Real acceleration>);

Thermometer thermo = new Thermometer;

SteamEngine engine = new SteamEngine;

thermo.measurement => engine.temperature;

Implemented as is, engine cannot consume the data given. In this case, we need
a converter. A converter is a PE, generally with one input and one output, which
transforms data from one form into another without actually changing its semantic
content — for example, PE ConvertIntegerToReal defined at the beginning of this
section. In Dispel, we can explicitly introduce a converter into a workflow as just
another PE, or we can rely on the gateway to which we submit our workflow to insert
any necessary converters for us:

Thermometer thermo = new Thermometer;

SteamEngine engine = new SteamEngine;

ConvertIntegerToReal convert = new ConvertIntegerToReal;

thermo.measurement => convert.input;

convert.output => engine.temperature;

The ability of a gateway to perform automatic type conversions is useful, but not
unlimited. In particular, the ability of a gateway to to decompose complex structural
types and perform conversions depends on there being a common abstract structure
apparent in both the original and target structural type descriptions — one would not
expect every possible output of TutorialQuery to be convertable into structural type
[<Integer key; String value>] without user knowledge of the possible results which
can be obtained from a given set of queries. In general, it is best not to rely too heavily
on the intelligence of any given gateway without good cause, particularly within
Dispel scripts which could be submitted to different gateways of possibly different
type conversion capability.

4.2 Type coercions

To recap, the language type system is concerned with control flow within Dispel
scripts, whilst the structural type system is concerned with data flow in workflows. It
is vitally important that there is no confusion between the two type systems — even
in circumstances where language types and structural types appear identical (Integer
/ Integer for example), there may be implementational differences between the types
used by the Dispel parser for validating and executing scripts, and the types used
within the actual implementation of the workflow described by a Dispel script.

If we want to step between the realm of language types and structural types, then
we need the means to convert data between type systems. To this end, we have at
our disposal both implicit and explicit type coercion. Implicit type coercion occurs

26

between primitive language and structural types, and occurs within stream literals.
For example, when we write:

Integer x = 3, y = 64, z = -4;

|-x, y, z-| => counter.input;

What we are doing is making a conversion of variables x, y and z from the Integer

language type to the Integer structural type. This type of coercion also occurs when-
ever variables defined within the Dispel script are wrapped within tuples, arrays or
lists and inserted into stream literals. Note that stream literals are the only way to
directly inject information from a Dispel script into the data stream described by a
PE workflow.

The implicit type coercion described above is adequate for quickly constructing simple
data streams to inject into a workflow, but is less suitable for more complex or dy-
namically constructed streams. For example, how do we feed an array of strings into
a stream as a sequence of elements? Assume that we have the stated the following:

TutorialQuery query = new TutorialQuery;

String[] queries = new String[3];

queries[0] = "SELECT name FROM littleblackbook";

queries[1] = "SELECT address FROM littleblackbook";

queries[2] = "SELECT number FROM littleblackbook";

How can we inject queries into query? We can insert it bodily into a data stream,
but then we have a single element containing an array of strings, which we now know
is the incorrect structure for data going into an instance of TutorialQuery, being of
type SQLToTupleList:

|-queries-|:String[] => query.expression; // Incorrect structure.

We can inject it manually element by element, but this requires that we know the
size of the array, and is particularly tedious for large arrays:

|-queries[0], queries[1], queries[2]-|:String => query.expression;

A more promising approach is to use a loop to build the stream based on the length
of the array at the time of computation. We do not want to have to define the
loop anew every time however, so we use a stream function. Stream functions are
simply functions which return elements of type Stream, which can then be connected
directly to a connection interface or concatenated with other streams. For example,
to feed an array element by element into a stream, we only need a function like
stringArrayToStream:

Stream stringArrayToStream(String[] array) {
Stream stream = |--|;

for (Integer i = 0; i < array.length; i++) {
stream += array[i];

}
return stream;

}

27

Note that we are still using implicit type coercion to add elements of array to
stream. Having registered this function (or in this case, imported it from package
dispel.stream), we can then invoke it when injecting the array with the desired con-
tent into our workflow:

stringArrayToStream(queries) => query.expression;

Stream functions are thus the preferred means by which to move between the language
and structural type systems for constructed types.

4.3 Connection modifiers

Connection modifiers are a class of modifier attached to connection interfaces which
describe how that interface produces / consumes data and how it does that in relation
to other interfaces within the same PE. For example, the initiator modifier, when
applied to an input interface, asserts that the modified interface consumes data before
all other input interfaces within a given PE; the other interfaces will only begin to
consume data once the initiator terminates.

Type LockedSQLQuery is PE(<Connection:String expression;

Connection:String initiator source> =>

<Connection:[<rest>] data>);

In this case, an instance of LockedSQLQuery handles queries in a similar fashion to an
instance of SQLQuery; however unlike SQLQuery, this PE only reads the data source
input once, prior to any queries, and returns results only from that data source. As
alluded to earlier, there is a simpler way to define PEs which are basically minor
modifications on existing ones:

Type LockedSQLQuery is SQLQuery with initiator source;

If we are only concerned with a one-off use of a modified PE, we can apply connection
modifiers upon instantiation:

SQLQuery query = new SQLQuery with initiator source;

Connection modifiers are both descriptive and perscriptive; they inform users about
the behaviour of certain PEs by their type descriptions, and they permit users to
make ad-hoc modifications of existing PEs. Consider the two PEs Combiner and
SynchronisedCombiner:

Type Combiner is PE(<Connection[] inputs> => <Connection output>);

Type SynchronisedCombiner is Combiner with roundrobin inputs;

The basic behaviour of Combiner is simply to unite its input streams into one stream
— no commitment is made as to how data from each input is ordered in the output
stream. SynchronisedCombiner however does make such a commitment — the effect
of the roundrobin modifier, when applied to an array of input connection interfaces,
is to assert that each interface in the array will consume a single data element (as
defined by the highest-level abstract structure of the data given) in order, further

28

consumption restricted into a full cycle has been performed. Thus, we know that the
output of an instance of SynchronisedCombiner will consist of all first data elements
of each input in order, followed by all second elements in order, and so on until all
inputs terminate.

The ability of users to apply ad-hoc modifications to existing PEs is limited to the
ability of the enactment platform to implement the modified PE; in most cases how-
ever, this is a simple matter, since most modifications in Dispel can be implemented
over existing code via interim interfaces. The full list of available connection modifiers
can be found in the Dispel reference manual.

4.4 Dispel domain types

The final type system used in Dispel is the domain type system. As with structural
types, domain type information is appended onto connection interface declarations —
in this case using double-colons (::). Unlike structural types however, domain types
describe not the structure of streamed data, but what a given data flow is from the
perspective of a domain expert. For example:

Type SQLToTupleList is

PE(<Connection:String::"db:SQLQuery" expression> =>

<Connection:[<rest>]::"db:TupleRowSet" data>);

From this we can infer that the text strings consumed by interface expression repre-
sent queries in the SQL language. We can also infer that the lists of tuples produced
by interface data are sets of entries (rows) drawn from a database. Domain types
permit ontological information to be embedded into Dispel workflows, which can be
used for mapping equivalences between ontological terms, or simply to assist the user
in understanding how to use a given PE type correctly.

Domain type descriptors are enclosed in quotation marks and prefixed with a names-
pace identifier. The namespace identifier serves as an alias for the ontology from
which a domain type is drawn. Namespace identifiers must be introduced within a
Dispel script using a namespace declaration:

namespace db "http://www.admire-project.eu/ontology/db#";

In this case, the namespace db is defined, drawing upon an ontology for databases (db
is in fact one of the core Dispel namespaces used internally for PE types, along with
dispel, which need not be explicitly defined in scripts).

Like with structural types, domain type mismatches can be dealt with using convert-
ers, albeit in this case ones that often maintain the same structure of data flowing into
and out of the converter, but rescale the data based on the percieved and required
domain types:

Type CelsiusToKelvin is

PE(<Connection:Real::"measure:Celsius" celsius> =>

<Connection:Real::"measure:Kelvin">);

29

For the CelsiusToKelvin converter, both input and output are of structural type Real,
but all celsius values going in are offset to match the equivalent kelvin value. Again,
implicit type conversions performed automatically by the gateway to which a Dispel
script is submitted may be available, but should not be relied upon too heavily.

30

Chapter 5

Case studies

5.1 The Sieve of Eratosthenes

The Sieve of Eratosthenes is a simple algorithm for finding prime numbers. The
algorithm works by counting natural numbers and filtering out numbers which are
composite (non-prime). We start with the integer 2 and discard every integer greater
than 2 that is divisible by 2. Then, we take the smallest of all the remaining integers,
which is definitely a prime, and discard every integer greater than that prime (in this
case 3). We continue this process with the next integer and so on, until the desired
number of primes have been discovered.

Sieve
Filter 1

2, 3, 4, 5, 6, ... Sieve
Filter 2

Sieve
Filter 3

Sieve
Filter n

...

Interpolate ...

Discard

Stop

Figure 5.1: The internal composition of the Sieve of Eratosthenes.

The Sieve of Eratosthenes, whilst ultimately a toy application, serves as a useful device
to demonstrate such Dispel concepts as connection modifiers, stream comprehensions
and cascading termination. The Sieve can be implemented by a pipeline pattern
described by a PE constructor. Using such a constructor, it is possible to implement
the pipeline for arbitrary numbers of primes. This pipeline pattern will take the form
shown in Figure 5.1.

The principal component of a Sieve of Eratosthenes is the filtering element used to
determine whether or not a given integer is divisible by the last encountered prime.
We define an abstract filter as so:

Type AbstractFilter is

PE(Stype Element is Any;

<Connection:Element input> =>

<Connection:Element filtered; Connection:Element unfiltered>);

31

A filter is expected to take a stream of inputs and split it into two streams (the
‘filtered’ stream and the remainder). A filter is not supposed to be transformative,
so the output streams should be of the same type as the input stream. Note that an
implementation of AbstractFilter is not actually expected to discard either filtered
or unfiltered elements, since it cannot be predicted which elements will be of most
interest in a particular use-case; if a workflow designer has no use of a given output,
that output can be redirected to discard.

Our filtering element must filter the first integer encountered on its input stream
as a prime (assuming the correct construction of the sieve as a whole), discard all
successive integers divisible by that prime, and pass onto the next filter all remaining
input. We can use a ProgrammableIntegerFilter to do the heavy lifting:

Type ProgrammableIntegerFilter is

PE(<Connection:Integer terminator input;

Connection:String initiator expression;

Connection[]:Integer lockstep parameters> =>

<Connection:Integer filtered; Connection:Integer unfiltered>);

We need only specify the filtering behaviour via input expression (filter all x where
x is divisible by some set integer y) and bind any free variables within the filter
specification via parameters (in this case y, provided by the first integer to enter our
filter). To split off the first input, we use HeadFilter:

Type HeadFilter is AbstractFilter

with filtered as head, unfiltered as tail,

@description = "Diverts the head of a stream.";

We can then create a constructor makeSieveFilter as defined in Figure 5.2; because
the constructor has no variable parameters, we immediately construct SieveFilter

and export it.

We can now define a constructor for the Sieve. The Sieve consists of an array of
filters, which sequentially redirect primes to an Interpolate PE:

Type Interpolate is

PE(Stype Element is Any;

<Connection[]:Element inputs> => <Connection:Element output>);

In order to ensure that the primes are output in order of discovery, we modify the
interpolator’s inputs to be roundrobin. We connect each filter’s unfiltered output
(being the sequence of numbers not divisible by the first prime encountered) to the
next filter, except for the last, which discards all such values (having found the last
prime of interest). We use a stream comprehension to generate all integers in sequence
from 2 onwards indefinitely, and connect that to the first filter.

That is enough to implement the Sieve; however we also want the Sieve to shutdown
once all required primes have been found rather than pour integers into the ether
indefinitely. So we specify each filter’s unfiltered output steam as terminator, except
for the last (which is discarded) — we instead create a connection from that filter’s
prime output to stop and declare that as being terminator. The effect of this is to
create a backwards termination cascade once the last prime is generated, which will

32

1 package tutorial.example {
2 // Import filters.
3 use dispel.filter.AbstractFilter;

4 use dispel.filter.HeadFilter;

5 use dispel.filter.ProgrammableIntegerFilter;

6

7 // Define sieve element constructor.
8 PE<AbstactFilter> makeSieveElement() {
9 // Create reference to input connection.

10 Connection:Integer input;

11 // Instantiate internal components.
12 HeadFilter split = new HeadFilter;

13 ProgrammableIntegerFilter divide =

14 new ProgrammableIntegerFilter with parameters.length = 1;

15

16 // Construct internal workflow.
17 |-"x if (x % $0) == 0"-| => divide.expression;

18 input => split.input;

19 split.head => divide.parameter[0];

20 split.tail => divide.input;

21 divide.unfiltered => discard;

22

23 // Output first integer received and all indivisible integers.
24 return PE(<Connection input = input> =>

25 <Connection filtered = split.head;

26 Connection unfiltered = divide.filtered>);

27 }
28

29 // Create the sieve element PE.
30 PE<AbstractFilter> SieveElement = makeSieveElement();

31

32 // Register sieve element.
33 register SieveElement;

34 }

Figure 5.2: Construction of a filter for the Sieve of Eratosthenes.

33

1 package tutorial.example {
2 // Import sieve components and abstract type.
3 use dispel.core.Interpolate;

4 use tutorial.example.SieveFilter;

5 use dispel.math.PrimeGenerator;

6

7 // Define sieve constructor.
8 PE<PrimeGenerator> makeSieveOfEratosthenes(Integer count) {
9 // Instantiate internal components.

10 SieveFilter filter = new SieveFilter[count];

11 Interpolate interpolate =

12 new Interpolate with roundrobin inputs, input.length = count;

13

14 // Initialise sieve elements.
15 for (Integer i = 0; i < count - 1; i++)

16 filter[i] = new SieveFilter with terminator output;

17 filter[count - 1] = new SieveFilter with terminator prime;

18

19 // Construct internal workflow.
20 |-x for x in 2..-| => filter[0].input;

21 for (Integer i = 0; i < count - 1; i++) {
22 filter[i].unfiltered => filter[i + 1].input;

23 filter[i].filtered => interpolate.inputs[i];

24 }
25 filter[count - 1].unfiltered => discard;

26 filter[count - 1].filtered => interpolate.input[count - 1];

27 filter[count - 1].filtered => stop;

28

29 // Return all primes generated.
30 return PE(<Connection input = numbers> =>

31 <Connection primes = interpolate.output>);

32 }
33

34 // Register constructor.
35 register makeSieveOfEratosthenes;

36 }

Figure 5.3: The Sieve of Erathosthenes, as a workflow pattern encapsulated within a
PE constructor.

34

1 package tutorial.example {
2 // Import abstract PE type and constructor.
3 use dispel.math.PrimeGenerator;

4 use tutorial.example.makeSieveOfEratosthenes;

5

6 // Construct the sieve.
7 PE <PrimeGenerator> SoE100 = makeSieveOfEratosthenes(100);

8 SoE100 sieve100 = new SoE100;

9 Results results = new Results;

10

11 // Construct the top-level workflow.
12 |-"100 prime numbers"-| => results.name;

13 sieve100.primes => results.input;

14

15 // Submit the workflow.
16 submit results;

17 }

Figure 5.4: An execution script for generating the first 100 primes in the Sieve of
Erathosthenes.

cascade back through all filters and end the infinite integer stream as well as close the
interpolator — thus ensuring the efficient shutdown of the entire Sieve.

The Sieve of Eratosthenes for one hundred prime numbers can now be executed as
shown in Figure 5.4.

35

