Yusuke Tanimural), Rosa Filgueira?), Isao Kojimal) and Malcolm Atkinson2)
1) National Institute of Advanced Industrial Science and Technology (AIST), Japan, 2) The University of Edinburgh, UK

Background

There Is a big problem in concurrent use of the parallel storage
systems on HPC Clusters. This might spoil the performance
Improvement that might otherwise be obtained by optimizations of
MPI-10, such as data sieving, two-phase collective 1/O and etc.

B MPI-10 is important for large data analysis.
> Initial input, final output, and checkpointing

B Total throughput degradation and instability by various, internal
and external interferences occur iIn HPC clusters. [J.Lofstead et al. in SC10]

B For example, access contention may happen,
a) when more than two parallel programs call MPI-10.
b) when external access (for pre/post processing) Is executed.

Compute nodes in the HPC cluster

- ~

Parallel App. A e P — PN /
ParaIIeIApp B ‘

AR A v",/"‘ f.fj External nodes

y N Expected performance
Data staging —3
f . Dror:>

WA |
iacdlla |

||||||||| f B
_ Actual performance
A shared storage system };:3 Access contention

Advance Reserva

Our approach to achieve performance guarantees is to allow users /
applications to explicitly reserve 1/O throughput of the storage
system Iin advance, with start and end time of the access.

B Neither overprovitioning nor reactive QoS mechanisms

B SLO (Service Level Objectives) :

> Read or write throughput (e.g., MB/sec) In a single access (open ~ close).
- Striping access Is automatically enabled if necessary.
> Measurement granularities are user-defined.

B Integration with the batch scheduler

Users tell necessary I/O throughput (and job execution or I/O time) to a batch
scheduler (BS) when they submit a job. Then BS reserves I/O throughput,

a) during entire execution of the job.
b) during specific 1/O time.
We expect that iterated jobs and system-level checkpointing may have

steady execution which allows users to estimate execution time of the job
and its 1/O time.

-~ - —_— / . P I TS oS el - 5 o B * ——
= - il . & . - . LA -y - ST W & B =1 3 = =Y .. - L8 - . 1 ad — . E
» 3 - 3 . , -y =5 e LT S g 1 w= == i S - 2 el - @ - * o i #u 5 Mo = L ‘n
. R TaRRE e T e Ea—. s 3 5
| g : . . TR = S - > e i =
: = . : . e . : o .
. : > - L < LR = ' . - - -
) ' £ i
.)
:
3

MPI-IO Applications using Shared Storage Systems

NATIOMAL INSTITUTE OF
A ’s ’ ADVANCED INDUSTRIAL SCIENCE
AND TECHNOLOGY (Al

ST),JAPAN

HE UNIVERSITY of EDINBURGH

nformatics

Desigh and Im

We have been developing a performance guarantee storage software called
Papio. In order to examine an effect of the performance guarantee of MPI-10,
we developed the ADIO layer of Papio for Dynamic-CoMPI.

B Papio [Y.Tanimura et al. in Grid 2010]

> Parallel I/0O storage software with performance guarantee functionality based on
advance reservation (Note that the reservation is mandatory for now.)

- Assign available resources to the reserved access: fully occupied or shared

Applications

MPI-10

MPI Collective

MPI Point to Point

ADIO (implemented in ROMIO)

Adaptive Device
Interface (ADI)

Run-time adaptive
message compression

LA-Two-Phase I/O

PVFS2

Lustre (e @ @ | Papio

Backend storage systems I

Dynamic-CoMPI features

- If shared, control I/O throughput of the storage network and 1/O scheduling of disks

B Dynarr IC-COMP| [R. Filgueira et al. in J. Supercomputing 2010]
> Implement advance features based on MPICH2

- Locality aware strategy for Two-Phase 1/O: Optimized data aggregation into
contiguous buffers, and sequential transfers into the file/storage system

- Adaptive-CoMPI: Run-time adaptive message compression
M ADIO layer of Papio (ad_papio) in ROMIO
> Support collective calls: MPI1_File _write_all(), MPI_File_read_all()

/ Reserve / Access request

N

Ny ‘
~ 5]

(Storage network)

Control by PSPacer

PVES2 Lustre oo Papio
system system system

- [Storage Manager \

i
o\

Control by PROBS
Storage devices)

= |

Storage Serve?

m | Stripe-contiguous (SC) | [File-contiguous (FC) |

- Papio (with reservation)

The performance of Dynamic-CoMPI/Papio with - Lustre (with collective comm.)
reservation was compared to Dynamic-CoMPI/{PVFS2 Oﬂ hggh HomorZeeese (0
or Lustre}, during concurrent access time. [_'_ﬁ?'f'ifif'f_'gf__'"f’[_"i-%_" /

B MPI-10 Test benchmark: We ran the benchmark and e oy o Jnes =i
an additional workload (sequential read/write). Both I %::::Hi:zpamo

access the storage system at the same time. — Fig.1

> Without the reservation, the throughput dropped 3~25%. F1g.1: MPIHIO Test Result

MPI program: Continue 32MB 1/0O

application which is a 3-dimensional simulator of bipolar e
devices. Its MPI-IO write access to the storage system =~ =
was conflict with the additional workload. — Fig. 2

> Papio provided faster (11~24%) and stable throughput.

300

240

180

Throughput [MB/s]

120

Experiment environment: 5 clients and 4 storage servers

- 4-core Opteron CPU, 8GB memory, OCZ VERTEX SSD, 1GbE network
- The MPI program was executed 1n parallel over 4 clients. " Wie | wWie, Read

60 -

B Application benchmark: We used the BISP3D Additional workload: Continue 1MB I/O

- PVFS2

- Lustre (without collective comm.)

In the Papio case, each
aggregate process requires

(reserves) 90MB/s and another

workload requires 20MB/s.

MPI processes (4 aggregators) Workload process (1)

I/O Servers

In the PVFS2 and Lustre cases,
I/O throughput is shared by
multiple accesses on the
conflicted I/O servers.

Fig.2: BISP3D Result

Without the reservation, total time increased 6~27% (1/O time
Increased 8~40%), while Papio provided required throughput.

80
70 -

Execution time [sec]

m Papio
m PVFS2 10 -
m Lustre (FC)

X | = 2

1k, co
2k, co

load
load

Read,

conflict conflict Papio

& | e

=4k, confli
=1k, co

load
load

3"
<
=
wn
N

Note that 46.8% of data was rearranged by LA-Two-Phase /0.

I = R e T B VA

flic

CCCCCCCCCCCCCCCCCC

2k, co
4k, confli
1k, co
2k, co
4k, co

load
load
load
load
load

Lustre (SC)

B The performance guarantee achieved stable execution of B Further development of ad_papio — Support other collective
MPI jobs during concurrent access time. calls and non-collective calls.

> Without the reservation, 1/O time increased 3~40% by conflicts. B Evaluation of the reservation-based job execution models

> Our approach is more effective for write than read. using the integrated batch scheduler.

