
Reservation-based I/O Performance Guarantee for
MPI-IO Applications using Shared Storage Systems

Design and Implementation

There is a big problem in concurrent use of the parallel storage

systems on HPC Clusters. This might spoil the performance

improvement that might otherwise be obtained by optimizations of

MPI-IO, such as data sieving, two-phase collective I/O and etc.

■ MPI-IO is important for large data analysis.

 > Initial input, final output, and checkpointing

■ Total throughput degradation and instability by various, internal

and external interferences occur in HPC clusters. [J.Lofstead et al. in SC10]

■ For example, access contention may happen,

a) when more than two parallel programs call MPI-IO.

b) when external access (for pre/post processing) is executed.

Evaluation

Advance Reservation Approach

Experiment environment: 5 clients and 4 storage servers

- 4-core Opteron CPU, 8GB memory, OCZ VERTEX SSD, 1GbE network

- The MPI program was executed in parallel over 4 clients.

Yusuke Tanimura1), Rosa Filgueira2), Isao Kojima1) and Malcolm Atkinson2)

1) National Institute of Advanced Industrial Science and Technology (AIST), Japan, 2) The University of Edinburgh, UK

The performance of Dynamic-CoMPI/Papio with

reservation was compared to Dynamic-CoMPI/｛PVFS2

or Lustre}, during concurrent access time.

■ MPI-IO Test benchmark: We ran the benchmark and

an additional workload (sequential read/write). Both

access the storage system at the same time. – Fig.1

 > Without the reservation, the throughput dropped 3~25%.

■ Application benchmark: We used the BISP3D

application which is a 3-dimensional simulator of bipolar

devices. Its MPI-IO write access to the storage system

was conflict with the additional workload. – Fig. 2

 > Papio provided faster (11~24%) and stable throughput.

We have been developing a performance guarantee storage software called

Papio. In order to examine an effect of the performance guarantee of MPI-IO,

we developed the ADIO layer of Papio for Dynamic-CoMPI.

■ Papio [Y.Tanimura et al. in Grid 2010]

 > Parallel I/O storage software with performance guarantee functionality based on

advance reservation (Note that the reservation is mandatory for now.)

 - Assign available resources to the reserved access: fully occupied or shared

 - If shared, control I/O throughput of the storage network and I/O scheduling of disks

■ Dynamic-CoMPI [R. Filgueira et al. in J. Supercomputing 2010]

 > Implement advance features based on MPICH2

 - Locality aware strategy for Two-Phase I/O: Optimized data aggregation into

contiguous buffers, and sequential transfers into the file/storage system

 - Adaptive-CoMPI: Run-time adaptive message compression

■ ADIO layer of Papio (ad_papio) in ROMIO

 > Support collective calls: MPI_File_write_all(), MPI_File_read_all()

Our approach to achieve performance guarantees is to allow users /

applications to explicitly reserve I/O throughput of the storage

system in advance, with start and end time of the access.

■ Neither overprovitioning nor reactive QoS mechanisms

■ SLO (Service Level Objectives) :

 > Read or write throughput (e.g., MB/sec) in a single access (open ~ close).

 - Striping access is automatically enabled if necessary.

 > Measurement granularities are user-defined.

■ Integration with the batch scheduler

Users tell necessary I/O throughput (and job execution or I/O time) to a batch

scheduler (BS) when they submit a job. Then BS reserves I/O throughput,

 a) during entire execution of the job.

 b) during specific I/O time.

We expect that iterated jobs and system-level checkpointing may have

steady execution which allows users to estimate execution time of the job

and its I/O time.

Conclusion

■ Further development of ad_papio – Support other collective

calls and non-collective calls.

■ Evaluation of the reservation-based job execution models

using the integrated batch scheduler.

Future work

■ The performance guarantee achieved stable execution of

MPI jobs during concurrent access time.

 > Without the reservation, I/O time increased 3~40% by conflicts.

 > Our approach is more effective for write than read.

Fig.1: MPI-IO Test Result

MPI program: Continue 32MB I/O

Additional workload: Continue 1MB I/O

Fig.2: BISP3D Result

Without the reservation, total time increased 6~27% (I/O time

increased 8~40%), while Papio provided required throughput.

Note that 46.8% of data was rearranged by LA-Two-Phase I/O.

Background

[File-contiguous (FC)] [Stripe-contiguous (SC)] In the Papio case, each

aggregate process requires

(reserves) 90MB/s and another

workload requires 20MB/s.

In the PVFS2 and Lustre cases,

I/O throughput is shared by

multiple accesses on the

conflicted I/O servers.

- Papio (with reservation)

- Lustre (with collective comm.)

- PVFS2

- Lustre (without collective comm.)

