The OpenKnowledge project

People talk about it. What is it??

OpenKnowledge

Decentralised, open, lightweight P2P framework

® Decentralised approach?

® aimed at choreography, not orchestration
® Open?

® peers do not have to be pre-configured at design-time
® Lightweight?

® concrete implementation, small footprint (<15Mb)

® no need for a system administrator to install and run it

® Peer-to-Peer?

® the choreographies treat all peers as equal

Choreographies

* Choreographies offer a global view of
Interactions

 Choreographies provide a contractual
agreement between the parties

Choreography Languages

® Majority of research has focused on
orchestration (centralised) coordination
languages

® Few choreography languages:
® WS-CDL - W3C working draft (virtually abandoned)
® BPEL4Chor (extension to BPEL)
® Let's Dance (simulation not enactment)

® Even fewer implementations!

LCC as choreography language

® LCCis an executable specification language
® Based on process calculus:

® facilitates model checking etc.

® protocols are declarative scripts written in a Prolog-like

language

® |t uses roles for agents and constraints on
message sending to enforce social norms

About LCC

® The basic behaviours are:
® = for sending a message
® & for receiving a message

® ho-op

® More complex behaviours can be expressed
using connectives:
® +then to create sequences

® o1 to create choices

Openk Framework structure

® The framework is composed by:

® 3 distributed network of peers able to perform tasks

through plug-in components (OKCs)

® 3 distributed Discovery Service (DS)

® The tasks are specified by Interaction
Models (IMs), written in Lightweight
Coordination Calculus

® Interaction models are choreographies

Framework architecture
Subscriptions / e

OKC.
OKC

-

OKC,
OKC.

I
OII(Cs
I
OKC.
I

Published Interaction Models

M3
rf:...

rg:...

- OKC.
|
1 foel | T
Nodes of the DDS: Shared OKCs Locally installed OKCs

IMs and OKCs can be
stored in multiple location.

Interaction lifecycle

1. 1M selection and subscription

a. Query to the DS

b. Subscribe to the IM best fitting needs and

capabilities

c. Wait for all roles in the IM to be subscribed
2. Bootstrapping the interaction

a. choice of the coordinator

b.selection of peers

c.commitment to participate

3. Interaction run

Choreography selection

® A peer selects choreographies for a task:
= queries the DS with a task description (keywords)
» DS matches choreography and task descriptions

» sends back list of matching choreographies

® Peer matches constraints to its OKCs

= uses ontological definition of arguments
(wordnet)

Link to e-science/DIR

* Peers own, control and process the data

locally:

* Processing elements (the OKC plug-ins) can be shared,
downloaded by the peers and executed locally

 |M describe their interactions, and what should be done
on the data.

e Data transfer can be minimised

Data flow efficiency

* Choreography improves efficiency of data
flow:

— no need of central engine as in orchestration
* Direct flow between processing nodes

* |nvolved participants and processing not
embedded in the nodes, but flexible

Orchestration

. ‘ query() ﬁ
d1:100MB 42:100MB
QUGFY()T 1 /
query() d3: 100MB

Execution
Engine

- 30MB Tl evaluate(d1, d2, d3) 300MB

O

Thanks Barker

Choreography

auery) C] %

query() d2:100MB
“

r:30MB
ﬁ d3:100MB

A—

query()

Thanks Barker

A quick calculation

Thanks Barker

Distributed fan-in

user processor source
prepare_guery
query
reply
- *,}|: ; ue
get_sourc\es ETE query
N N g7 TN\
"s o ue
all_sent? éources compose] Query
~ - v /, v
P R gxtract info]
- i \X
all_arrived? summary 1
data
ves -7 ~7

response

-~ \\
summary

-
-~
-

Message reception

LCC fa N _i N Message sending

constraint

a(user,U)::

nul-—prepare_query(QJand getPeers(sourc” Ps)
then a(querier(Q,Ps),
then(response(S)<a(processor,P)]
a(querier(Q,Ps),U)::

null

or
query(Q)=a(source,P){Ps=[P|P{]]

then a(querier(Q,Pt),U)

a(source,S)::

Run example

user processaor sourcel sourcez source?
I [I I I
prepareQuenQ) | | | | |
h I I I I
role;user I | | | |
I I I I
T | querd@ | I |
role: querier Bl | QUeriQ) | query@y |
I 7 extractinfo{Q,D
IT | extractinfo(Q,D) QD)
| extractinfo(Q,D)
| rephaD)

-

role:receiverl‘-l] <

rephaD)

_.<
T

role:processorl%‘_, compose(R,5)

response(s)

role:user 5 | =

X

L

X

T
I
X

Some concluding remarks

® Service choreography

® Global view, contractual agreement, optimal
data transfer

® Important in data-centric workflows

® Robustness
® No single point of failure

® OpenKnowledge and LCC
® Compact, executable choreography language
® Corresponding enactment framework

