Capability Transfer for Service Collaboration

R. Alexander Milowski
ILCC, School of Informatics
University of Edinburgh
Email: alex @milowski.com

Abstract—As the use of collaborative computing in e-Science
expands on the Internet, the need to provide access to protected
resources (e.g. data sets, storage, web services, or other com-
putational peers) becomes a central issue. Yet, providing access
typically requires using authentication credentials and exposing
credentials is a breach of security. Simple examples of this conflict
arise in the use of ‘“cloud services” for storage. As these services
are used by semi-trusted delegates, how do the delegates access
your resources, without your credentials, while being restricted to
the exact set of operations the task requires? We have developed
a new security scheme, called the Capability Trust Exchange
Model, that is designed to be layered over existing web services
and standards to provide specific capabilities to a semi-trusted
delegate without exposing credentials.

I. INTENT BETWEEN COLLABORATING AGENTS

With respect to consumer services, collaboration between
different services provided by different organizations is a well
used and accepted technique that provides the user with a
unified user experience within the context of the web browser.
When an HTML document contains correct references to a
variety of services from different providers, a user accessing
that document via a web browser has access to those services
just by viewing the document. The browser, in combination
with the user’s permission and in compliance with the same-
origin policies, acts as a point of aggregation.

In contrast, on the computational web, collaboration is
between systems acting as agents of the user who is pushed
to the edge of the computation where that user may initiate a
process and is subsequently not directly involved. The user
typical starts by authenticating and authorizing the system
to perform a particular task. These tasks are typically ones
that require time and resources beyond the patience and
capabilities of the user directly. As a result, the user expects to
withdraw from the process and will not necessarily be directly
involved in the further processing, recruitment of services, and
delegation of tasks.

This contrast represents a duality between the experiences of
the user via a web browser and the viewpoint of computational
agents operating on its behalf. In figure 1, the user’s browser is
on the upper left and the computational agents are on the lower
right. In the middle of the figure are services and resources
with which the user or agents might interact.

On the consumer web, a person is typically seated in front
of the web browser and the person’s experience with the
application shown in the browser is effectively synchronous.
While the individual components within the web browser may

Henry S. Thompson
ILCC, School of Informatics
University of Edinburgh
Email: ht@inf.ed.ac.uk

Fig. 1.
Synchronous Agent Experience

Agents Duality

Aggregation of
Resources

Os|

User enactment and
authorization with
the User Agent
(Browser)

User is absent so
who enacts or
authorizes?

Asynchronous Agent Experience

be communicating asynchronously and in parallel, the user’s
expectation is synchronous with regards to when the aggrega-
tion completes. This means the user expects the document to
load and execute in a “reasonable” amount of time.

A user in this system performs an enactment of both intent
and authorization within the web browser. While the user
has simply asked to visit an address on the web via a link,
bookmark, or other such annotation, the user has explicitly
expressed intent and implicitly authorized the web browser to
load, process, and execute the resource retrieved. Within the
security policies of the browser, any number of services may
be aggregated in front of the user.

These aggregated services may further ask the user for
authorization. Once authorized, cooperation between different
web services may ensue. For example, a map may be loaded
with the user’s annotations or picture might be uploaded to
a photo gallery on another service. With respect to whatever
the desired behavior has been, the user has watched over and
authorized the activities.

While the browser user agent receives information by re-
trieving documents, the computational agent is typically sent
information upon which it is supposed to compute. The agent
may interact with a number of different resources or other
agents during this computation. The result of this computation
may not be available for hours, days, or weeks. The agent’s
view of the aggregation is asynchronous where the response
containing the result of the computation is delayed by the
necessary processing time.

When a user instructs a computational agent to act on



the user’s behalf, the user is no longer directly involved in
the process. That leads directly to the thorny issue of which
“entity” enacts intent and authorizes activities. Solving this
issue is central to extending collaboration of services from the
individual to automated systems.

As collaborative computing in e-Science expands on the
Internet, the use of anonymous or semi-trusted agents for
computing will only increase. As a result, the need to represent
the user’s intent and perform enactment and authorization to
provide access to protected resources (e.g. data sets, storage,
web services, or other computational peers) is a central issue
for collaboration between services. Yet, doing so requires
going beyond the typical conflicted compromise of exposing
credentials in order to provide access to secured services.

II. THE STORAGE TRIANGLE

When tasks are delegated to services provided by different
organizations, problems arise as to where to send the results.
The interaction between the Requestor and the Delegate is
usually in the form of a short message that encapsulates a
set of instructions for the task. The Requestor then leaves the
conversation expecting the Delegate to complete the task and
“send” them the results. Unfortunately, as the Requestor has
left the conversation, where does the Delegate send the results?

While e-mail is one way in which the Delegate might return
the results of completing the task, if the receiver of the result
is yet another service, e-mail is a less than ideal way of
receiving data. In response to this problem, the Requestor may
want to introduce some kind of Storage Service (i.e. a web-
based storage system like Amazon S3 [1]) that it expects the
Delegate to use. Typically, the Delegate must have some kind
of privileged access to the Storage Service to actually store
the results.

The problem in this scenario is that the Delegate may
be provided by another organization that is a semi-trusted
principal and so the Delegate is only semi-trusted. While the
Requestor has made a number of assessments of the Delegate
to ensure that the task being delegated will be performed
as requested, that trust will degrade quickly with regards to
the system policies that might be in place to protect data,
credentials, etc. being compromised by an attacking third
party. As a result, the Requestor is unlikely to want to pass its
authentication credentials for a Storage Service along to the
Delegate.

This scenario is shown in figure 2 and is described as
follows:

1) The Requestor sends a message of instructions to a
Delegate containing a task to be performed. The message
includes a reference to the storage service.

2) The task is performed by the Delegate.

3) Upon completion, the Delegate stores the results via the
Storage Service.

4) Later, the Requestor can access the Storage Service to
check for and review the results.

Similarly, if the Delegate only receives a reference to the

necessary inputs to their task, it must request and receive these

Fig. 2. Storage Triangle Interactions

Storage Service
(Resource)

Checks/Retrieves

Result .
{/

Requestor
(Owner)

Task
Instructions

Performs Task

inputs. The Delegate may need to access information that is
protected. While the Requestor may want to expose a certain
amount of data to the Delegate, that access must be limited to
exactly the information necessary and no more.

III. CAPABILITY EXCHANGES

Our use of capability transfers was inspired, in part, by
the “Web Keys” proposal described in [2]. While this pro-
posed solution to Cross Site Request Forgery (XSRF) [3]
utilizes fragment identifiers to provide browsers with access
to protected resources, we take this idea further and adjust the
placement of the “encoded key” or “token” to allow flexible
use of web-based protocols for the transferred capability.

Traditionally, a Capability is an object that encapsulates
a reference to a group of data along with the authorization
and associated access rights, rules for use, and other attributes
that describe how the data can be used within the context
of the Capability. Within a capability-based system, having
a reference to data and having the permission to access or
manipulate the data tends to come together. The use of the
Capability is typically checked by a Reference Monitor whose
role is to check the access by a process to data within a
Capability. The Capability is also granted against a Security
Policy, which is a set of rules that determines the types of
capabilities that may be transferred for the data [4]. In what
follows, these ideas of capability-based security have been
applied within the context of distributed computation on the
Web to allow agents to transfer capabilities for web resources
to task delegates.

When the scenario of the storage triangle plays out on the
Web, the “data” is a set of resources that are identified and
accessible via some set of URIs [5]. A Resource is typically
a storage unit within some system (e.g. Amazon S3 buckets
[1]) that has both identity and manipulative access via a URL
As a result, the capability is a packaging of the URIs that
identify the resources and specific access methods allowed
against them.

The Requestor in the storage triangle must also have priv-
ileged access to the Resource. Within the context of this
scheme, we’ll assume that this privileged access is an result of



the fact that the Requestor is the resource owner. Although, in
fact, the role actor needs only the permissions for operations
being delegated. That is, in this specific role, the Owner has
a trusted relationship with the system providing the Resource,
which is typically via a set of authentication credentials over
some protocol, where the operations the Owner chooses to
delegate must be ones it can perform itself. The term “Owner”
was simply choosen because the actor has been granted, and
so “owns”, the rights to the operations it can delegate. Further,
this use of “owner” should not be confused with a “service
provider” (e.g. a third party storage provider like Amazon S3)
as the “owner” pays for, utilizes, and “owns” data resources
that are stored and made accessible by systems owned and
provided by the service provider.

Within the process of granting and transferring capabilities
against any resource on the Web, there is an additional actor
called the Resource Monitor. The role of this actor is the same
as the Reference Monitor in capability-based security parlance
but the Resource Monitor is also a resource in itself that
provides a web-based API, like OAuth [6], that is utilized by
the Delegate to negotiate access to the resource. The Resource
Monitor has a semi-trusted relationship with the actual Owner
and a trusted relationship with the Delegate. While the Owner
should proceed with caution, the Resource Monitor is typically
a known entity to which the Owner will delegate the task of
brokering access to a capability.

In figure 3, the Capability Trust Exchange Model is shown.
This model uses two exchanges: a trusted exchange between
the Owner and the Resource and a semi-trusted exchange
between the Owner and the Resource Monitor. The trusted
exchange provides a means for the owner of the resource to
configure capabilities and grant access against those capabil-
ities. This exchange may be through public or private means
depending on the level of security needed.

The semi-trusted exchange represents a trust relationship
between organizations or individuals. As this exchange exists
between organizations, it may be manifested as infrastructure
provided by either the Owner or Resource Monitor. Although,
ultimately it is the Owner who chooses to establish a relation-
ship with another organization who is providing the Delegate
and this relationship is negotiated between the Owner and
Resource Monitor.

Finally, within the whole scheme, the Delegate has a ten-
uous relationship to the other actors. The Delegate has some
registered identity with the Resource Monitor that it will use
to negotiate access to the capability it has been granted. This
negotiation is accomplished by checking the delegate’s grant
via the semi-trusted exchange and then granting access via the
trusted exchange.

At the start of the process, in step 1 of figure 3, the Owner
first defines the capability against a set of resources by sending
a request to the system providing the Resource. This exchange
with the Resource is via some trusted exchange mechanism
that may need authentication credentials or may be provided
through some other mechanism. In either circumstance, if the
Resource accepts the capability’s definition, a reference in the

Fig. 3. Capability Trust Exchange Model for the Storage Triangle

Resource

Token Access
Token

A/Access T

Capability

Access
Token

Delegate
Token + URI
—

Delegate

form of a Capability Token is generated and returned to the
Owner.

The Owner is now able to do whatever it would like with
this capability via the Capability Token. As it represents the
capability granted against a set of resources, in step 2, the
Owner can pass a reference (i.e. a generated identifier) to this
token, but not the token itself, to the semi-trusted Resource
Monitor for delegation via some semi-trusted exchange. The
actual Capability Token should be hidden from parties outside
of the Owner and the Resource to protect it from illicit
manipulation by other parties. The Resource Monitor uses
this reference to negotiate access on behalf of the Delegate
at a later point and so without the actual Capability Token,
the capability cannot be changed for the Delegate, even if
either has access to the Resource. Similar to the Capability
Token, the Resource Monitor generates and returns a Delegate
Token to the Owner and maintains an association between the
referenced Capability Token and the Delegate Token.

At this point, in step 3, the Owner can transfer the capa-
bility via some interaction with the Delegate. This interaction
typically identifies both the Resource set and capability by
passing a pair containing a URI and the Delegate Token, but
the URI may be implied by the exchanged message or task.
Nevertheless, the Delegate now must attempt to exchange the
Delegate Token for an Access Token that can be used to access
the actual Resource.

The steps 4 though 6 would typically happen in a syn-
chronous manner where steps 5 and 6 are subsumed. At step
4, the Delegate attempts to exchange the Delegate Token for
an Access Token. An Access Token is a token generated by the
Resource and associated with the capability. The token is used
by the Resource in the web protocol to access the capability
(e.g. as a query parameter) and is checked against the allowed
operations associated with the capability when the Delegate
accesses the Resource.

To receive an Access Token to return to the Delegate, in step
5, the Resource Monitor has a semi-trusted exchange with
the Owner. During this exchange, in step 6, the Owner has
a trusted exchange with the Resource to generate an Access



Token. If this sequence is successful, this token is passed back
through the same chain of communications to the Delegate.

At this point, the Owner’s agent has been re-inserted into the
process—which may seem to violate the scenario where the user
has left the process that it originally initiated. The Delegate
may access the capability at an unpredictable later time at
which the capability may have been revoked or its current
Access Token may have expired. These situations require rene-
gotiation with the Resource to ensure the capability is active
and available. In addition, it is the Resource’s system that gen-
erates the Access Token. Unfortunately, the Resource Monitor
is not necessarily associated with the Resource directly and so
requires an exchange directly with some representation of the
Owner. In an environment where these actors are provided
within the same infrastructure, the exchange between the
Resource Monitor and Resource is trusted and the Owner can
be removed from the process. This scenario is shown in figure
4 where step 6 has been omitted and step 5 is an exchange
directly with the Resource.

At the final step 7, the Delegate can access the capability
utilizing some protocol and API associated with the URI of
the Resource that also must encode the Access Token received
in step 4. When the Resource receives the request, it can look
up the capability and check to see if the requested operation
is allowed. At any point, the Owner or Resource can revoke
the access token and disallow any access by the Delegate.

Fig. 4. A Trusted Resource Monitor in the Storage Triangle

Trusted Exchange
Access
ﬁ'cockeesns / Token T
Trusted
Exchange
5

Delegate
Token

Resource

Capability
Token

Access
Token

Delegate
Token + URI
—

Delegate

A simple example of using capability transfer is when the
Owner wants to grant the ability for a Delegate to post one
picture of an active simulation to a specific picture gallery
owned by the Requestor ([7] and [8]). The action of posting a
picture is a single atomic operation against a URI (an HTTP
POST). As such, the Delegate would only be granted the
ability to POST a message (entity body) containing a single
picture and not other methods (e.g. GET) against the gallery.
The Resource Monitor would then act as a broker between the
Delegate and the authenticated access to the gallery API.

IV. DESCRIBING CAPABILITIES

A capability on the Web is a pairing of an identification
of a set of resources and a set of constraints on the kinds of
operations that can be performed upon those resources. Over
most web protocols, these directly translate into a set of URIs
that identify the resources and restrictions on the kinds of
methods and messages that can be sent to those resources.
For example, one might restrict a capability to a single HTTP
POST against a very specific URL

More formally, we’ll define a Web Capability as the pair
of:

o A Target Resource Set,
o A set of Operation Constraints.

A Target Resource Set is a collection of URIs that identifies
a set of resources. While these resources may be related by a
common base URI, the resources are not required to have any
such relationship. In fact, the simplest example is a singleton
containing a specific URL

To allow simple modeling of access to resource-oriented
web services, a Target Resource Set is allowed to be un-
bounded and identify whole families of resources whose URIs
match particular patterns or can be identified with a particular
base URIL. Such patterns may be specified by inclusion or
exclusion mechanisms when the target resource set is defined.

Against this set of resources a set of constraints is declared.
A Operation Constraint is a triple of an operation name,
an integer, and a set of constraining facets. The operation
name typically matches a request type in a protocol such
as the method name in HTTP [9]. An implementation uses
the operation name to find the set of Operation Constraints
that apply to a given request. This operation name may be a
wildcard to allow matching any operation.

The integer value in the constraint tuple is a non-zero
priority that may be positive or negative. A negative value
indicates a “knock-out” constraint such that if the Operation
Constraint matches, the request does not match the capability.
Similarly, a request must match some positively prioritized
Operation Constraints to match the capability. This means the
simplest capability is the tuple (x,1,{}).

Each constraining facet describes a matching facet that the
request against the resource must have. These constraints allow
fine-grained control over the the allowed messages that can
be sent to any resource in the Target Resource Set. It is also
possible to constrain information received about the Delegate
such as network addresses or other client identity information.

Some possible constraining facets are:

« client identity,

o client network address,

o duration (expiration date),

« entity message size,

« entity content type,

o multi-part messages and constraints,

o number of uses.

For example, in the “upload a single picture” example, the
constraints might be:



e content type: image/*

e size less than 1IMB

« only once

The whole capability for posting a single picture might be
described as:

( { http://upload.example.com/gallery/12345 } ,

{ ( "pOST", 1, {
starts-with (content-type (), "image/"),
size() < 1048576,
uses () < 1

where the first part of the pair is the target resource set—
which here is a singleton listing a specific URI-and the set of
Operation Constraints. Here the POST operation is associated
with a set of constraints on the content type of entity body,
the size of the entity body, and the number of previous uses
of this capability.

While not described here, the capability could easily be
encoded in an XML document for exchange between the
Owner and the Resource during its trusted exchange when the
capability is defined. The flexibility of the XML format may
allow a broad range of capabilities to be described beyond
the abilities of the system hosting the resource and so the
system may refuse the capability as it is unable or unwilling
to support the request. Even though a system may be able to
concisely describe its allowed capability constraints, having
a standardized markup language for describing capabilities
would allow the Owner to have interoperability with a number
of different systems without changing its vocabulary.

Regardless of the language used to describe the capability,
when the capability is used, a system must perform the same
set of checks against the request. When a request against the
capability is received, it is checked by:

1) Find all matching tuples where the operation name of
the request matches. If there are no matches, stop and
refuse the request.

2) Order the matching tuples by the integer priority from
lowest to highest.

3) Apply constraints of the tuples in their sorted order. For
each matching tuple, if the priority is negative, stop and
refuse the request. If the priority is positive, stop and
grant the request.

V. TRUST EXCHANGES OVER XMPP

Central to the Capability Trust Exchange Model, shown in
figure 3, is the idea of trusted and semi-trusted exchanges.
While these could be simply realized as web protocols over
HTTP, the actual relationship between the Owner and the
Resource Monitor may be one that is negotiated by a larger
organization of which the Owner is only a part. Similarly, the
trusted exchange between the Owner and the Resource may
also be a part of the infrastructure in the Owner’s environment.

There are any number of possibilities for these trusted
exchanges of which the simplest would be some kind of
authenticated access via a web API. In the case of the trusted
exchange, this may be an appropriate architectural choice. In
contrast, in the case of the semi-trusted exchange, the Owner
is an entity whose relationship is formed via the semi-trusted
relationship that is established by its overarching organization.



As such, the Owner may not have direct access or credentials
for the Resource Monitor.

To complicate things further, the owner is an entity who
is transient in the process. Granting access whenever the
Delegate negotiates with the Resource Monitor may be de-
layed when the agent representing the intent of the Owner
is not available. Specifically, in our scheme, we would like
to know when an Owner’s agent is online and available to
participate in approving the exchange of a Delegate Token for
an Access Token. We would also like to protect the identity of
the Owner as much as possible. As such, the exchange should
maximize the knowledge of the presence of the Owner and
establish some kind of intermediary where these parties can
exchange messages without direct knowledge of its identities
(e.g. location, IM address, e-mail) or credentials for access.

One key technology to consider here is Extensible Mes-
saging and Presence Protocol (XMPP) [10]. Inherent in the
protocol is the ability to tell when a peer is online via presence
messages. If both the trusted and semi-trusted exchanges are
able to utilize XMPP, the parties in the exchange would have
knowledge of who is available for interaction. In addition,
these exchanges could be hosted by the larger organizations
to which the various parties belong.

XMPP is an XML-based protocol for peer-to-peer commu-
nication typically used for instant messaging, voice, or video
chat. The essential idea within the XMPP protocol is that the
client sends and receives a sequence of stanzas. A stanza is
essentially an XML element whose attributes contain routing
information and whose element name and content provides
typing and the data of the message, respectively. The stanzas
exchanged with the peer’s server are such that the XML
representation can be routed to any number of peers based on
the identity of the target. These messages are routed such that
the stanza element arrives on the incoming stream of stanza
elements at the recipient’s client.

Routing is accomplished via the information encoded in the
peer’s identity. An XMPP identity is represented by a literal
value of the form user@domain/resource which is very
similar to an e-mail address but has the “/resource” suffix
used to identify the actual physical location of the user (e.g.
“laptop” vs. “mobile”). The hosting server guarantees that the
resource used is unique during the bind phase of the initial
connection. Within the network of peers, the servers are truly
peer-to-peer and each client must be able to make a connection
to its domain’s XMPP server.

XMPP servers are located via DNS-based lookup of SRV
records using the domain part of the XMPP identity. Once a
client sends a stanza whose destination is outside of its server,
the destination’s server must be located via a similar SRV
record lookup. Routing between servers is then accomplished
by a clever server dial-back exchange that gives modest
guarantees on the sender.

As an XML-based protocol, XMPP is extensible and pro-
vides a number of optional features. One of these features
is Multi-User Chat (MUC) [11] that provides the ability for
peers to meet and exchange messages within a “room” without

necessarily knowing each other and approving contact between
the peers. As such, a MUC room can be used to facilitate
exchange between peers.

A MUC room facilitates exchanges between peers that may
not “know” each other and so cannot directly communicate.
Within the room, each room member has an in-room identity
and a real identity outside of the room. Messages within the
room are routed to in-room identities and then replicated out
to the actual room occupant’s identity. As such, peers can
meet in a room and exchange messages (essentially, XML
content) without necessarily knowing their real identities and
pre-defining the route and controls for doing so for each peer.

This provides a basic mechanism for the trusted and
semi-trusted exchanges. In each exchange, the room and its
members are configured by the infrastructure provider—which
is typically a hosting organization provided by agreement
between participating organizations. Participating members are
assigned their own room credentials by which it may join the
room and exchange stanza messages with other online room
members.

In the case of a trusted exchange (e.g. between the Owner
and Resource), access to the MUC room and the messaging
within the room is very tightly controlled. The members and
their configuration might be subject to strict security policies
to ensure that the exchanges within the room are truly from
trusted participants. This may include end-to-end signing of
stanza messages [12].

For the semi-trusted exchange, the MUC room is hosted
by arrangement between the delegate’s and owner’s organi-
zations. This manifests itself both as the Resource Monitor
and the room participant for it. In this case, after a semi-
trusted relationship is negotiated, the semi-trusted exchange’s
MUC room is established and credentials for each participant
are created and distributed. It is then the responsibility of
the resource Owner to participate in both the trusted and
semi-trusted exchange MUC rooms to facilitate the capability
transfer.

In figure 5, the relationship between XMPP identities,
agents, and MUC rooms is shown. The trusted and semi-
trusted exchanges are represented by MUC rooms provided
by services at two different XMPP servers. The semi-trusted
exchange’s MUC room has participants from different domains
and so must be setup to federate and propagate messages
between servers. The configuration of services and location
of exchanges is either pre-configured or something that is
discovered by the Owner when the Delegate is discovered.

As XMPP stanzas are XML messages, we could realize this
exchange as a conversation of XMPP message elements. We’ll
assume that all the parties have negotiated their membership
in the appropriate MUC rooms. In step 1, the Owner creates
the capability with an exchange with the Resource. In step 2,
a reference to the capability is sent to the Resource Monitor
via the semi-trusted exchange’s room which is identified as
semi@conf.capxfer.org. This stanza uses the standard
XMPP message element and contains a custom element con-
taining the reference to the capability:



Fig. 5. XMPP-Based Exchanges

Resource

Domain A ‘m
2 groom
Server
@

Resource
Aonitor
BX5)

WO X Sonmsai gy onans
()aner .' emi-truste! ‘. ggtygr
99@@

Delegate

~—

<message to='semi@conf.capxfer.org’
from=’semi@conf.capxfer.org/owner’
xmlns='jabber:client’>
<create-delegation ref='xy23pf2’
xmlns="http://capxfer.org/V/exchange’ />
</message>

Note that the message is to the MUC room and not the
Resource Monitor. We do not necessarily know the in-room
identity of the Resource Monitor at this point even though we
could have discovered this previously via service discovery.

In step 3, the Resource Monitor in the room responds with
a delegate token directly to the in-room identity of the Owner
that was provided in the previous message in the “from”
attribute:

<message to='semi@conf.capxfer.org/owner’
from=’ semi@conf.capxfer.org/resm’
xmlns=' jabber:client’>
<delegate-token for=’'xy23pf2’ id="d5674322'
xmlns='http://capxfer.org/V/exchange’ />
</message>

Through whatever means provided through the recruitment
of the Delegate, in step 4, the Owner sends the Delegate
Token to the Delegate along with other instructions. When
the Delegate attempts to exchange this token for access, in
step 5, the Resource Monitor sends a message to the Owner
via the room:

<message to='semilconf.capxfer.org/owner’
from=’semi@conf.capxfer.org/resm’
xmlns=’jabber:client’>
<exchange-token ref='d5674322’
xmlns='"http://capxfer.org/V/exchange’ />
</message>

Finally, in step 6, if the Owner is willing and able to still
grant access, an Access Token is returned:

<message to=’semilconf.capxfer.org/resm’
from='semi@conf.capxfer.org/owner’
xmlns='jabber:client’>
<access-token for='d5674322’ id='a7488391’
xmlns="http://capxfer.org/V/exchange’ />
</message>

Upon receiving the Access Token, the Resource Monitor
returns this to the Delegate through whatever it was requested.

It should be noted that messages sent by the Owner in
step 1 are routed through the trusted room to the Resource,
while in step 2 and 6, the Owner’s messages are routed via
the “Domain A Server” to “Domain B Server” and into the
semi-trusted room to be received by the Resource Monitor.
Similarly, in step 3 and 5, messages sent by the Resource
Monitor are routed first to the semi-trusted room and then via
a hop between “Domain B Server” to “Domain A Server” to
be received by the real identity of the Owner. These routes
can be located in the figure 5 by the numbered circles.

VI. USING OAUTH FOR DELEGATE ACCESS

The strategy throughout this design has been to put the
onus on the infrastructure so that the Delegate has a simple
way to access capabilities that have been transferred. Once
the Delegate has received the Delegate Token, it needs only to
exchange this with the Resource Monitor to be able to access
the Resource over standard web protocols.

To keep parity with the web protocols used to access
the Resource, a standard web-based protocol should be used
between the Resource Monitor and the Delegate. A good fit for
this is the OAuth 2.0 protocol [13] as it is a web protocol for
transferring access to resources between parties. Specifically,
the section on “Obtaining an Access Token” describes what
the Delegate must accomplish to obtain something it can use
with the Resource.

As the grant to the Delegate has already been received
as a Delegate Token, the grant is treated as an assertion in
terms of OAuth. As described in section 4.1.3 of OAuth
2.0, the Delegate converts the Delegate Token into an Access
Token by sending it to the Resource Monitor as an assertion.
The assertion_type parameter is sent with a value of
http://capxfer.org/0/token and the Delegate Token
is sent as the assertion parameter.

Once the Resource Monitor receives a proper request from
a known Delegate, the process of communicating through
the semi-trusted exchange with the Owner is initiated. If
successful, an Access Token is returned. This Access Token
can be used in further OAuth requests or as specified by the
API used to access the Resource.

For example, the Delegate sends an OAuth access grant
request to the Resource Monitor, which is defined to be an
HTTP POST request:

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=assertion&client_id=s6BhdRkqgt3&
client_secret=47HDu8s&assertion=xyzzyé&
assertion_type=http%3a%2f%2fcapxfer.org$2f0%2ftoken



and receives in response:

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
"access_token":"S1AV32hkKG",
"expires_in":3600,
"refresh_token":"8xLOxBtZp8"

The Resource Monitor may require specific credentials to be
provided. For example, a Delegate may have credentials with
the Resource Monitor that have been pre-established and are
required to be sent as an Authorization header with any
access token grant request. These are allowed by the OAuth
2.0 specification and allow additional security measures to be
defined by the organization providing the Resource Monitor.

Once the Delegate has the Access Token, it can use the token
to access the Resource. The OAuth Protocol provides a number
of ways to do this via either an Authorization header,
a URI query parameter, or a form-encoded body parameter.
Once received, a resource may refuse the access code and
return a WWW—-Authenticate header describing why.

For example, a Delegate might send a POST request to a
Resource as follows:

POST /gallery/12345 HTTP/1.1
Host: upload.example.com
Content-Type: image/png
Authorization: OAuth S1AV32hkKG

In addition to exchanging Delegate Tokens for Access To-
kens, the Resource Monitor may provide other services to
the Delegate such as refreshing tokens. The Delegate might
need to interact with the Resource Monitor more than once
to refresh tokens when they expire as specified by the OAuth
protocol or other local or remote security policies. Once the
Delegate has received a response with an error status code
and a WWW—-Authenticate header, the Delegate may decide
they need to refresh the Access Token based on the information
received or local policies.

While OAuth is being used only between the Resource
Monitor and the Delegate, there is nothing that prevents OAuth
from being used more extensively between the other parties.
The only limiting factor is the transient nature of the Owner
as stated in the asynchronous model of the Storage Triangle
problem. It is relevant to note that one form of authorization
is for a Resource Monitor to actually contact the Owner
over XMPP and send him or her human readable messages
asking them to authorize certain delegates. This may integrate
well with OAuth 2.0 in a more interactive way than the use
described above.

VII. CONCLUSION

The need for privacy and control over shared data in e-
Science has hindered the ability to share data amongst semi-
trusted parties. Utilizing capability transfer methodologies
allows organizations to model trust relationships in the access
they grant to systems performing tasks. As such, having these

models directly realized in the way web resources are used is
essential.

While organizations and individuals may have strong trust
relationships, these human trust relationships break down
when systems and agents they operate are expected to collab-
orate without human involvement. The model presented here
recognizes the existence of both the semi-trusted and trusted
relationships and allows very specific control to be enacted
or revoked. This allows collaboration of systems without user
interaction while still preserving its intent.

As the need in services for users to transfer and delegate
capabilities against resources increases, services will likely in-
tegrate some ability to accomplish the same goals as presented
in this paper. This can be seen in the recent development of the
“Bucket Policy” facility of Amazon S3 where you can create
an access key that can be used to read or write to buckets
without the need for authentication. As such, in the realm of
service collaboration, it appears these services are ready to
adopt the idea of capability transfer and so an opportunity
exists to standardize how they are transferred and controlled.



(1]
(2]

(3]
(4]

(5]

(6]

(71

(8]

[91

REFERENCES

Amazon Simple Storage Service, Amazon, http://aws.amazon.com/s3/
Close, Tyler, Mashing with permission, W2SP 2008: WEB 2.0 SECU-
RITY AND PRIVACY 2008, http://waterken.sourceforge.net/web-key/
Security Corner: Cross-Site Request Forgeries., Chris Shiflett, December
2004, http://shiflett.org/articles/cross-site-request-forgeries

Kain, Richard Y. and Landwehr, Carl E, On Access Checking in
Capability-Based Systems, IEEE Transactions on Software Engineering,
1987, vol 13, pp 202-207

Architecture of the World Wide Web, Volume One, W3C, Jacobs, Ian
and Walsh, Norman, December 2004, http://www.w3.org/TR/webarch/
RFC 5849: The OAuth 1.0 Protocol, IETF, April 2010,
http://tools.ietf.org/html/rfc5849

Allen, Gabrielle, Exploiting Web 2.0 for Scientific Simulation, eSI
Workshop: The Influence and Impact of Web 2.0 on Various
Applications, May, 2010, Edinburgh e-Science Institute, Edinburgh,
http://www.nesc.ac.uk/esi/events/1078/programme.pdf

Allen, G.; Loffler, F.; Radke, T.; Schnetter, E.; Seidel, E. , Integrating
Web 2.0 technologies with scientific simulation codes for real-time
collaboration, IEEE Cluster 2009, August, 2009, IEEE, New Orleans,
LA, http://www.cluster2009.org/w41.pdf

Hypertext Transfer Protocol — HTTP/1.1, IETF, June 1999,
http://tools.ietf.org/html/rfc2616

[10] Extensible Messaging and Presence Protocol (XMPP): Core, IETF,

October 2004, http://tools.ietf.org/html/rfc3920

[11] XEP-0045: Multi-User Chat, XMPP Standards Foundation, 2010,

http://xmpp.org/extensions/xep-0045.html

[12] End-to-End Signing and Object Encryption for the Extensible

Messaging and Presence Protocol (XMPP), IETF, October 2004,
http://tools.ietf.org/html/rfc3923

[13] The OAuth 2.0 Protocol, IETF, July 2010, http://tools.ietf.org/html/draft-

ietf-oauth-v2-10



